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Abstract 

Rainfall across various climatic zones of Egypt, including arid coastal and semi-arid inland regions, exhibits significant temporal 

and spatial variability. Precise estimation of effective rainfall depths is essential for design engineers, hydrologists, and consultants 

involved in the construction of hydraulic structures such as dams, lakes, culverts, and diversions.  Moreover, rainfall depth plays a 

crucial role in the design of urban drainage systems, small-scale irrigation projects, and broader water resource management 

initiatives. To address this need, an atlas of isopluvial maps for Egypt was developed using statistical methodologies and 

Geographic Information System (GIS) tools. This study employed short-duration rainfall data from various climatic zones of 

Egypt to create an empirical formula for estimating short-duration rainfall depths. Maximum annual daily rainfall data from 54 

stations were analyzed to estimate short-duration rainfall values. The analytical process used Gamma distributions to determine 

maximum rainfall depths for various return periods and durations.  The derived empirical formula and daily rainfall data were then 

incorporated into a GIS framework for spatial interpolation and the generation of isopluvial maps.  The resulting atlas provides 

isopluvial maps for return periods ranging from 2 to 200 years and durations from 5 minutes to 24 hours. These maps serve as a 

valuable resource for decision-makers and design engineers, providing reliable rainfall estimates for specific locations or regions 

across Egypt. Additionally, the methodology presented in this study offers practical guidance for understanding and modeling the 

temporal and spatial distribution of rainfall in diverse climatic regions; its potential for improving the design of hydraulic 

structures is highlighted. Further validation of the atlas using independent datasets is recommended.  
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1. Introduction 

Egypt faces significant challenges due to limited water resources, necessitating efficient use of both natural 

and non-conventional water sources (Gado et al. 2023). Effective management of floodwaters requires 

constructing hydraulic structures such as dams, reservoirs, channels, and culverts. Additionally, 

meteorological data is necessary to anticipate and mitigate flood-related risks. Precise knowledge of 

extreme rainfall events, including their magnitude and duration, is essential for ensuring the safety of lives, 

property, and infrastructure (Parvez et al. 2019; Kawara, Elsebaie 2022). Consequently, accurate estimates 

of maximum runoff are essential for planning and constructing such hydraulic systems (Das et al. 2022). 

However, the availability of reliable rainfall data in Egypt is hindered by several challenges, including 

missing data, short record lengths, and inconsistent spatial distribution of rainfall stations. These 

limitations underscore the importance of developing robust methodologies to estimate rainfall intensities 

and durations accurately. 

In recent years, Egypt has undertaken numerous infrastructure development projects, such as roadways, 

monorails, railways, bridges, and urban drainage systems in new cities . Before initiating such activities, 

comprehensive meteorological and hydrological investigations were required to design flood protection 
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systems (Division of Hydrometeorology 2007). Rainfall patterns, including their frequency, intensity, and 

spatial distribution, are increasingly influenced by climate change, which has been identified as a major 

factor in the increased frequency of heavy rainfall events and shifting patterns  (Das et al. 2022). Notably, 

Egypt has already experienced increased frequency of extreme rainfall events and altered seasonal 

distributions (Nashwan et al. 2019; Roushdi 2022), highlighting the urgent need for updated 

methodologies to address evolving climatic conditions. Specifically, observed changes in Egypt’s rainfall 

patterns include increased extreme rainfall events and altered seasonal distributions, which have significant 

implications for water resource management and infrastructure planning. These changes highlight the 

urgent need for updated methodologies to address evolving climatic conditions  (Nashwan et al. 2019; 

Roushdi 2022). 

In arid and semi-arid areas, significant changes in the properties of rainfall from one time to another can 

be noted. Therefore, understanding the dynamics of rainfall processes, including total rainfall, intensity 

over specific periods, and year-to-year variability, is essential. Reliable estimates of rainfall depths require 

comprehensive analyses of long-term historical rainfall data (Parvez et al. 2019). The availability of 

extensive rainfall records is crucial for conducting frequency analyses to derive accurate rainfall depth 

estimates (Al-Amri, Subyani 2017; Matos 2018). In Egypt, obtaining long-term, continuous rainfall records 

can be challenging because of issues such as the limited number of long-operating stations and gaps in 

existing datasets. These challenges are particularly pronounced for short-duration rainfall data, which is 

critical for designing hydraulic structures and urban drainage systems. The scarcity of recording rain 

gauges capable of capturing high-resolution temporal rainfall information, especially in remote or 

ungauged areas, exacerbates this issue. Additionally, inconsistencies in data collection practices, such as 

variations in measurement techniques and equipment, further contribute to the limitations of historical 

rainfall data. 

Intensity–duration–frequency (IDF) curves and isopluvial maps are widely used in meteorology, 

hydrology, and water resource engineering for design, planning, operation, and management purposes  

(Subyani, Al-Amri 2015; Şen 2019). For example, IDF curves have already been developed for the Sinai 

Peninsula, a distinct climatic region in Egypt (El-Sayed 2011; Fathy et al. 2014). However, these Sinai-

specific curves may not accurately represent rainfall characteristics across the diverse climatic zones of the 

entire country. The development of new IDF curves for Egypt is not only justified but necessary to 

address the limitations of outdated data, insufficient spatial and temporal resolution, and the impacts of 

climate change. These updated curves provide a valuable resource for modern infrastructure planning and 

water resource management, ensuring that designs are both safe and sustainable in the face of evolving 

climatic challenges. 

The scarcity of short-duration rainfall data in many parts of Egypt exacerbates the challenge of accurately 

estimating rainfall intensities for critical infrastructure design. This scarcity is often attributed to the 

limited number of recording rain gauges capable of capturing high-resolution temporal rainfall 

information. Using reliable rainfall data is strongly recommended for the effective and secure design of 
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flood protection projects (Ewea et al. 2017). Furthermore, analyzing trends and variability in annual 

maximum daily rainfall series and understanding their impacts on total rainfall are critical areas of study 

(Ghenim, Megnounif 2016).  

Since climate change has gained international attention from scientists, the intense study of rainfall 

frequency relationships, including the creation of isopluvial maps, has become an important tool for 

understanding broader climatic trends (Bonnin et al. 2011; The Rainfall Atlas of Hawai’i 2011; Schroeder 

2013). 

The objective of this study is to develop an empirical formula and a comprehensive atlas of isopluvial 

maps for Egypt, using statistical methodologies and GIS tools. Specifically, the study aims to: 

1. Estimate short-duration rainfall depths based on daily rainfall records. 

2. Generate isopluvial maps for various durations and return periods. 

3. Investigate the potential influence of climate change on the derived rainfall estimates and their 

implications for future infrastructure design. 

The expected contributions include providing engineers and policymakers with reliable tools for designing 

hydraulic structures, urban drainage systems, and flood protection measures. These outputs will enhance 

the accuracy of rainfall predictions and support adaptive planning in response to evolving climatic 

conditions. The findings of this study are expected to offer significant benefits to engineers, policymakers, 

and other stakeholders involved in water resource management and infrastructure planning. By providing 

accurate rainfall estimates for specific durations and return periods, the study supports the design of 

resilient hydraulic structures, urban drainage systems, and flood mitigation strategies  (Rana et al. 2023). 

Additionally, the isopluvial maps serve as a valuable resource for identifying high-risk areas and optimizing 

resource allocation for infrastructure projects (Carvalho et al. 2022). This study offers a novel, nationwide 

assessment of short-duration rainfall depths and isopluvial mapping for Egypt, building upon existing 

regional studies such as the IDF curves developed for the Sinai Peninsula. Unlike previous studies that 

focused on specific regions, this research provides a comprehensive framework applicable to Egypt’s 

diverse climatic zones, incorporating updated methodologies and considerations for climate change 

impacts. 

2. Data and methods 

2.1. Study area 

Egypt spans diverse climate zones that exhibit significant variability in rainfall patterns, both temporally 

and spatially. A recent high-resolution climatic classification study identified distinct zones using image 

clustering techniques applied to meteorological data. These climatic zones reflect differences in rainfall 

magnitude, frequency, and seasonal variability across the country (Hamed et al. 2022). 

1. Mediterranean Coastal Zone: This region experiences relatively higher rainfall compared to the rest of 

Egypt, with precipitation concentrated during the winter months from the influence of Mediterranean 

cyclones. 
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2. Nile Valley and Delta Zone: Characterized by moderate rainfall, this zone benefits from proximity to 

the Nile River and exhibits more uniform rainfall distribution compared to desert regions. 

3. Western Desert Zone: This arid region receives minimal rainfall, with sporadic and highly variable 

precipitation events driven by rare convective storms. 

4. Eastern Desert and Red Sea Coast Zone: This zone experiences localized but intense rainfall events, 

often associated with tropical systems or Red Sea troughs. 

5. Sinai Highlands Zone: Includes mountainous parts of the Sinai Peninsula that occasionally receive 

convective or orographic rainfall, mostly in spring and autumn. 

Understanding these climatic differences is critical for effective water resource management and 

infrastructure planning. This study focuses on rainfall data collected from 54 meteorological stations 

distributed across Egypt, ensuring comprehensive coverage of the country’s varied climatic conditions. 

The locations of these stations are shown in Figure 1, highlighting their strategic placement within each 

climatic zone to capture regional rainfall variability. 

2.2. Data collection 

Egypt is monitored by an extensive network of rainfall recording stations  with more than 100 stations 

nationwide., Daily rainfall data from 54 meteorological stations were used in this study, with observation 

periods ranging from 19 to 118 years. These 54 stations were chosen because they provide a representative 

sample of Egypt’s diverse climatic zones, including coastal, desert, and semi-arid regions. Stations with 

incomplete records or significant data gaps were excluded to ensure data quality. 

Rainfall measurements were recorded hourly or daily, depending on the station. Table 1 details the range 

of available records and the geographic coordinates of these stations. The rainfall data obtained from the 

Egyptian Meteorological Authority (EMA) stations are recorded on a daily basis for all 54 stations, while 

the data obtained from the Water Resources Research Institute (WRRI) are recorded on an hourly basis 

(only three WRRI stations were selected). 

Most stations (41 out of 54) have data spanning over 40 years, with 10 stations exceeding 75 years of 

records. Conversely, 13 stations have records shorter than 40 years, and only two have data for less than 

19 years. The data were purchased from the Egyptian Meteorological Authority (EMA), ensuring access to 

high-quality, officially recorded rainfall measurements. 

Additionally, short-duration rainfall data from various climatic zones in Egypt were collected and analyzed 

to estimate maximum rainfall depths for different durations. Rainfall storm data for durations of up to 24 

hours were obtained from three specific stations: Saint Katherine, Marsa Matrouh, and Shalateen. These 

stations were selected because they represent distinct climatic zones: coastal (Marsa Matrouh) , 

mountainous (Saint Katherine) , and desert (Shalateen),  ensuring the generalizability of the results across 

diverse regions. Furthermore, these stations are equipped with hourly monitoring provided by the Water 

Resources Research Institute (WRRI), which is critical for capturing high-resolution temporal rainfall data. 

The limited density of hourly recording stations in Egypt, combined with challenges such as insufficient 
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monitoring infrastructure in remote areas and inconsistent recording practices, made it difficult to expand 

the analysis to a larger network. Additional stations were considered but excluded due to insufficient 

storm event data or inconsistent recording practices. 

These rainfall events occurred during the period from 2015 to 2024, ensuring a robust dataset for analysis. 

The availability of hourly data allowed for precise estimation of short-duration rainfall depths, which is 

critical for constructing accurate empirical formulas and IDF curves. 

 

Fig. 1. Location of rain gauge stations. 
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Table 1. Years of record and locations of rain gauge stations. 

No. Station Name 
Coordinates 

Observation period No. of years 
Latitude (DMS) Longitude (DMS) 

1 Sallum 31°32’00 “N 25°11'00"E 1975:2018 44 

2 sidi Barrani 31°38'00"N 25°28'00"E 1975:2018 44 

3 Marsa Matrouh 31°20'00"N 27°13'00"E 1968:2018 51 

4 EL Dabaa 31°38'00"N 25°28'00"E 1968:2018 51 

5 Ras EL Teen 31°12'00"N 29°51'00"E 1968:2022 55 

6 Alexandria 29°57'00"N 31°12'00"E 1968:2022 55 

7 Rosetta 31°24'00"N 30°24'00"E 1973:2022 50 

8 Baltim 31°33'00"N 31°06'00"E 1992:2017 26 

9 Damietta 31°25'00"N 31°49'00"E 1968:2017 50 

10 Port Said 31°16'00"N 32°17'00"E 1887:2017 118 

11 Katamiya 30°04'00"N 31°50'00"E 1973:2020 40 

12 Damanhour 31°02'00"N 30°28'00"E 1984:2005 22 

13 Ganakleas 30°49'00"N 30°12'00"E 1968:2022 55 

14 EL Tahrir 30°39'00"N 30°42'00"E 1968:2022 55 

15 Wadi EL Natrun 30°23'00"N 30°12'00"E 1968:2022 55 

16 Sohag 26°34'00"N 31°42'00"E 1968:2020 52 

17 Qena 26°11'00"N 32°44'00"E 1935:2018 84 

18 Luxor 25°40'00"N 32°42'00"E 1939:2018 59 

19 Aswan 23°58'00"N 32°47'00"E 1935:2018 82 

20 Siwa 29°12'00"N 25°29'00"E 1968:2018 51 

21 El Wahat Bahariya 28°20'00"N 28°54'00"E 1969:2014 46 

22 Farafra 27°03'00"N 27°58'00"E 2004:2018 15 

23 Dakhla 25°29'00"N 29°00'00"E 1968:2018 51 

24 Kharga 25°27'00"N 30°32'00"E 1969:2018 50 

25 ELArish 31°16'00"N 33°45'00"E 1908:2022 83 

26 Rafah 31°16'00"N 34°14'00"E 1990:2013 24 

27 Nikhil 29°55'00"N 33°44'00"E 1907:2017 69 

28 Abu Redis 28°53'00"N 33°11'00"E 1976:2021 37 

29 EL Tor 28°14'00"N 33°37'00"E 1920:2014 65 

30 Cairo 30°08'00"N 31°24'00"E 1974:2020 47 

31 Abbasiya 30°05'00"N 31°17'00"E 1976:2020 43 

32 Helwan 29°52'00"N 31°20'00"E 1908:2020 82 

33 Fayoum 29°18'00"N 30°51'00"E 1929:2018 75 

34 Beni Suef 29°12'00"N 31°01'00"E 1948:2020 59 

35 Minya 28°05'00"N 30°44'00"E 1936:2020 69 

36 Asyout 27°03'00"N 31°01'00"E 1924:2018 95 

37 Suez 29°52'00"N 32°28'00"E 1887:2020 110 

38 Hurghada 27°17'00"N 33°46'00"E 1933:2018 86 

39 El Qosir 26°08'00"N 34°18'00"E 1927:2018 92 

40 Ras Benas 23°58'00"N 35°30'00"E 1966:2018 53 

41 bir el abd 30°58'34.6"N 32°45'32.8"E 1996:2020 23 

42 el hasana 30°27'03.1"N 33°46'14.7"E 1938:2017 49 

43 nuwebaa 28°58'50.0"N 34°41'00.0"E 1992:2019 28 

44 dahab 28°29'43.3"N 34°30'06.8"E 1999:2017 19 

45 ras eknaqab 29°35'59.4"N 34°43'57.9"E 1982:2021 40 

46 ras sudr 29°34'55.1"N 32°42'50.3"E 1976:2022 47 

47 saint Kathrine 28°40'48.1"N 34°03'52.0"E 1934:2022 47 

48 el melez 30°25'04.3"N 33°08'56.0"E 1982:2022 41 

49 Sharm El Sheikh 27°57'36.0"N 34°18'00.0"E 1982:2015 34 

50 Safaga 26°44'00.0"N 33°56'00.0"E 1994:2018 25 

51 Sharq el oinat 22°34'34.0"N 28°42'14.0"E 2001:2018 18 

52 Abu Qir 30°03'34.0"N 31°18'47.0"E 1973:2022 50 

53 Shalateen 35°35'16.0"N 23°07'58.0"E 2000:2018 19 

54 Borg El Arab 29°33'10.0"N 30°54'20.0"E 1994:2018 25 
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2.3. Methods 

Rain storms recorded from three gauges distributed across Egypt were collected for analysis. Two 

methods were applied to determine the ratios (generalized WRRI ratios) of storm depths at various 

durations, ranging from 10 minutes to 18 hours, relative to the 24-hour depth. The first method relies on 

recorded rainfall depths, while the second method employs frequency analysis . Frequency analysis was 

used, along with direct recording, to address specific limitations of relying solely on recorded depths. 

Recorded rainfall data may not adequately capture extreme rainfall intensities due to the limited number of 

storm events observed over time. Frequency analysis helps overcome these limitations by statistically 

modeling rainfall patterns and providing estimates for return periods that extend beyond the observed 

record. This ensures a more robust representation of rainfall intensities, particularly for rare but high -

impact events, which are critical for infrastructure design and flood risk management. 

Initially, daily rainfall data were used to compile the maximum annual daily rainfall series. These maximum 

values were then converted into shorter durations (5, 10, 20, 30 minutes, and 1, 2, 3, 6, 12, 18 hours) using 

the generalized WRRI ratios. These durations are standard for hydrological analysis in Egypt and align 

with international practices for IDF curve development. Subsequently, the derived series were subjected 

to statistical analysis to estimate rainfall values corresponding to return periods of 2, 5, 10, 20, 25, 50, 100, 

and 200 years. These return periods align with standard infrastructure design requirements in Egypt, 

ensuring the practical applicability of the findings for engineering projects such as drainage systems, flood 

protection measures, and hydraulic structures. 

The methodology for creating the isopluvial maps comprised five steps (Trypaluk 2024): 

1. Data Preparation: Maximum daily rainfall records were collected and converted into short durations 

(e.g., 5, 10, 20, 30 minutes, and up to 24 hours) using generalized WRRI ratios. 

2. Frequency Analysis: Various statistical distributions, including gamma, Gumbel, and log-normal, were 

tested. The gamma distribution was identified as the best fit based on goodness-of-fit metrics 

(Awadallah, Younan 2012). 

3. Rainfall Depth Estimation: Rainfall values for durations from 5 minutes to 24 hours and return periods 

of 2 to 200 years were estimated. 

4. GIS-Based Mapping: Using GIS tools and the inverse-distance-weighted (IDW) interpolation method, 

isopluvial maps were generated for different durations and return periods  (Muhammad 2016). 

5. Validation: The empirical formula and isopluvial maps were validated against observed rainfall data and 

previous studies to ensure accuracy (Fathy et al. 2014; El-Sayed 2017). 

By integrating these steps, the study presents a comprehensive methodology for analyzing rainfall 

variability and providing valuable input for hydrological and engineering applications. 
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3. Results and discussion 

3.1. Reduction formula 

The Indian Meteorological Department (IMD) recommended an empirical reduction formula to estimate 

short-duration rainfall intensities from annual maximum rainfall data. This approach is especially useful in 

regions where sub-daily rainfall data are scarce or unavailable, because it allows engineers and hydrologists 

to derive short-duration rainfall estimates using more widely available daily rainfall records  (Rasel, Islam 

2015; Jalee, Farawn 2017). In Saudi Arabia, proposed ratios for 1-day rainfall are as follows: 0.37, 0.40, 

0.46, 0.53, 0.61, 0.66, 0.70, 0.76, 0.80, and 0.87 for durations of 10, 15, 30, 60, 120, 180, 240, 360, 480, and 

720 minutes, respectively (AlHassoun 2011; Kawara, Elsebaie 2022). Similarly, for the Sinai Peninsula, the 

proposed ratios for 1-day rainfall are 0.5, 0.57, 0.68, 0.70, 0.72, and 0.82 for durations of 0.5, 1, 2, 6, 12, 

and 18 hours, respectively (Awadallah, Younan 2012). Additionally, for Sinai, the WRRI-proposed ratios 

for 1-day rainfall are 0.18, 0.3, 0.36, 0.46, 0.58, 0.72, 0.77, 0.85, and 0.92 for durations of 5, 10, 20, 30, 60, 

120, 360, 720, and 1080 minutes, respectively (El-Sayed 2017). The ratios from Saudi Arabia and the Sinai 

Peninsula were chosen because they represent arid and semi-arid regions with climatic conditions similar 

to those in Egypt. These regions also rely on sparse but reliable rainfall data, making their methodologies 

comparable. However, recent rainfall data were employed to develop a generalized equation for estimating 

short-duration rainfall from daily rainfall records. 

The reduction formula was derived using high-resolution, short-duration rainfall data collected from three 

key stations equipped with advanced monitoring capabilities: Saint Katherine, Marsa Matrouh, and 

Shalateen. These stations record rainfall depths at a high temporal resolution (5 minutes), ensuring precise 

and reliable estimates of maximum rainfall depths for durations ranging from 10 minutes to 24 hours. To 

derive the reduction formula, maximum rainfall depths for each storm were calculated at different 

durations and accordingly, the corresponding maximum annual rainfall depth. Frequency analyses were 

performed, and the ratio of storm depths for each duration was computed relative to the 24-hour rainfall 

depth for each return period. Table 2 illustrates the ratios developed using two distinct methods, while 

Figure 2 displays the average ratios for durations up to two hours. A logarithmic trendline was applied 

because it provided the best fit based on statistical metrics such as R² and mean absolute error (MAE). 

The corresponding fitting equation was derived, providing a predictive tool for estimating short-duration 

rainfall depths. 

Table 2. Average depth ratios with respect to 24 hr. depth at different durations. 
 

Ratio 
Duration (min) 

10 15 30 60 120 1440 

First method 0.30 0.38 0.50 0.59 0.70 1.00 

Second method 0.24 0.30 0.42 0.54 0.60 1.00 

Average 0.27 0.34 0.46 0.57 0.65 1.00 
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The Generalized Water Resources Research Institute (GWRRI) developed an empirical reduction formula 

to estimate short-duration rainfall depths for durations up to two hours. The formula is: 

Rt = R * [0.1457 ln(t) 0.0492] 

where: Rt is the estimated rainfall depth in mm at t duration; R is the daily rainfall depth in mm; t is the 

storm duration in minutes for which the rainfall depth is estimated. 

This formula provides a practical tool for converting daily rainfall data into precise short-duration 

estimates, facilitating its application in hydrological modeling and engineering designs. Validation 

demonstrated its reliability in capturing extreme rainfall events critical for infrastructure projects. 

Validation was performed using R². The results showed high accuracy, with R² values exceeding 0.95 for 

most stations. The method’s ability to address gaps in conventional estimation methods makes it 

particularly valuable for adaptive planning.  

Furthermore, a comparison between the ratios derived from data and frequency analysis (Table 2) and 

those estimated using the GWRRI formula (Table 3) reveals strong agreement. For most durations, the 

differences between the two methods are minimal, underscoring the reliability and robustness of the 

empirical formula. This consistency highlights the formula's effectiveness in providing accurate and 

reliable estimates of short-duration rainfall depths across diverse climatic zones in Egypt. 

 

Fig. 2. Average depth ratios with respect to 24 h depth at different durations. 

The rainfall depths estimated using the GWRRI formula have been compared with the WRRI ratios for 

Sinai (El-Sayed 2017), as shown in Table 3. The comparison reveals that the developed GWRRI ratios 

closely align with the WRRI ratios, demonstrating a fairly good agreement between the two methods. This 

consistency highlights the reliability of the GWRRI formula for estimating short-duration rainfall depths. 

Also, the new formula improves accuracy by incorporating recent rainfall data, making it more adaptable 

to current climatic conditions in Egypt. 
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Table 3. Comparison between the calculated GWRRI ratios and WRRI ratios.  

Ratio 
Storm Duration (min) 

5 10 20 30 60 120 360 720 1080 1440 

GWRRI formula 0.18 0.29 0.35 0.45 0.55 0.65 0.81 0.91 0.97 1.00 

WRRI ratios 0.18 0.30 0.36 0.46 0.58 0.72 0.77 0.85 0.92 1.00 

3.2. Short duration estimation 

The one-day annual maximum rainfall series was extracted from all available stations, using rainfall data 

from 54 stations to estimate short-duration rainfall. Daily rainfall records from various stations spanning 

the entire area of Egypt were converted into shorter durations using the GWRRI ratio. 

Short durations of 5, 10, 20, 30, 60, 120, 360, 720, and 1080 minutes were generated for all years of 

available records. These durations are standard for hydrological analysis in Egypt and align with 

international practices for IDF curve development. As an example, Table 4 presents the tabulated short-

duration rainfall data for the Abu-Redis station. Abu-Redis was chosen as an example because it 

represents a typical station with moderate rainfall variability, making it suitable for illustrating the 

methodology. Similarly, short-duration rainfall data were tabulated for the remaining 53 stations, providing 

a comprehensive dataset for analysis across Egypt. 

3.3. Frequency analysis 

The availability of data is essential for frequency analysis. The objective of frequency analysis is to relate 

the magnitude of extreme events to their frequency of occurrence by applying different probability 

distributions (Al-Amri, Subyani 2017; Gado et al. 2023). Several theoretical distribution functions have 

been used worldwide, such as Type I extreme value (Gumbel), general extreme value (GEV), Weibull, 

gamma, normal, log-normal, Pearson type III and log-Pearson type III distributions (Al-Aboodi et al. 

2019; Shamkhi et al. 2022). Previous studies in Egypt and similar arid and semi-arid regions approached 

rainfall frequency analysis using a variety of probability distributions, often selected based on the 

availability of data and the specific climatic conditions of the region. In Egypt, previous research has 

commonly employed distributions such as the Gumbel, log-normal, and Pearson type III to model 

extreme rainfall events. These distributions were chosen for their ability to capture the variability and 

extremes observed in historical rainfall records (Trypaluk 2024). 

In this study, the available data are sufficient at almost all stations to perform frequency analysis. Multiple 

probability distribution functions were applied to estimate maximum rainfall values for different return 

periods using Hyfran Plus v2.1 (El Adlouni, Bobée 2015; Almheiri et al. 2024) and Flood Frequency 

Analysis (Freq) software v2.0 (Hamed, Rao 2019). These programs offer a suite of powerful, adaptable, 

and user-friendly mathematical tools for statistically analyzing extreme events. They support various 

probability distributions and enable users to compare fitting results across multiple statistical distributions 

within the same dataset. Additionally, the Freq software employs standard goodness -of-fit tests, such as 

the chi-square test and the Kolmogorov-Smirnov test, to assist in selecting the best-fit distribution.  
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Table 4. Short duration rainfall series for Abu-Redis station. 

Year 
Rainfall 

(mm) 

Duration (min) 

5 10 20 30 60 120 360 720 1080 1440 

1976 4.0 0.7 1.2 1.4 1.8 2.3 2.9 3.1 3.4 3.7 4.0 

1977 7.1 1.3 2.1 2.6 3.3 4.1 5.1 5.5 6.0 6.5 7.1 

1978 2.5 0.5 0.8 0.9 1.2 1.5 1.8 1.9 2.1 2.3 2.5 

1979 11.2 2.0 3.4 4.0 5.2 6.5 8.1 8.6 9.5 10.3 11.2 

1980 23.7 4.3 7.1 8.5 10.9 13.7 17.1 18.2 20.1 21.8 23.7 

1981 0.4 0.1 0.1 0.1 0.2 0.2 0.3 0.3 0.3 0.4 0.4 

1982 19.7 3.5 5.9 7.1 9.1 11.4 14.2 15.2 16.7 18.1 19.7 

1983 3.6 0.6 1.1 1.3 1.7 2.1 2.6 2.8 3.1 3.3 3.6 

1984 4.5 0.8 1.4 1.6 2.1 2.6 3.2 3.5 3.8 4.1 4.5 

1985 15.7 2.8 4.7 5.7 7.2 9.1 11.3 12.1 13.3 14.4 15.7 

1986 1.9 0.3 0.6 0.7 0.9 1.1 1.4 1.5 1.6 1.7 1.9 

1987 4.3 0.8 1.3 1.5 2.0 2.5 3.1 3.3 3.7 4.0 4.3 

1988 10.3 1.9 3.1 3.7 4.7 6.0 7.4 7.9 8.8 9.5 10.3 

1989 1.2 0.2 0.4 0.4 0.6 0.7 0.9 0.9 1.0 1.1 1.2 

1990 44.6 8.0 13.4 16.1 20.5 25.9 32.1 34.3 37.9 41.0 44.6 

2000 5.2 0.9 1.6 1.9 2.4 3.0 3.7 4.0 4.4 4.8 5.2 

2001 10.0 1.8 3.0 3.6 4.6 5.8 7.2 7.7 8.5 9.2 10.0 

2002 2.1 0.4 0.6 0.8 1.0 1.2 1.5 1.6 1.8 1.9 2.1 

2003 2.0 0.4 0.6 0.7 0.9 1.2 1.4 1.5 1.7 1.8 2.0 

2004 0.7 0.1 0.2 0.3 0.3 0.4 0.5 0.5 0.6 0.6 0.7 

2005 2.6 0.5 0.8 0.9 1.2 1.5 1.9 2.0 2.2 2.4 2.6 

2006 3.6 0.6 1.1 1.3 1.7 2.1 2.6 2.8 3.1 3.3 3.6 

2007 1.7 0.3 0.5 0.6 0.8 1.0 1.2 1.3 1.4 1.6 1.7 

2008 2.4 0.4 0.7 0.9 1.1 1.4 1.7 1.8 2.0 2.2 2.4 

2009 16.4 3.0 4.9 5.9 7.5 9.5 11.8 12.6 13.9 15.1 16.4 

2010 6.6 1.2 2.0 2.4 3.0 3.8 4.8 5.1 5.6 6.1 6.6 

2011 0.5 0.1 0.2 0.2 0.2 0.3 0.4 0.4 0.4 0.5 0.5 

2012 2.2 0.4 0.7 0.8 1.0 1.3 1.6 1.7 1.9 2.0 2.2 

2013 5.8 1.0 1.7 2.1 2.7 3.4 4.2 4.5 4.9 5.3 5.8 

2014 5.6 1.0 1.7 2.0 2.6 3.2 4.0 4.3 4.8 5.2 5.6 

2015 6.7 1.2 2.0 2.4 3.1 3.9 4.8 5.2 5.7 6.2 6.7 

2016 3.0 0.5 0.9 1.1 1.4 1.7 2.2 2.3 2.6 2.8 3.0 

2017 0.9 0.2 0.3 0.3 0.4 0.5 0.6 0.7 0.8 0.8 0.9 

2018 3.2 0.6 1.0 1.2 1.5 1.9 2.3 2.5 2.7 2.9 3.2 

2019 17.8 3.2 5.3 6.4 8.2 10.3 12.8 13.7 15.1 16.4 17.8 

2020 5.3 1.0 1.6 1.9 2.4 3.1 3.8 4.1 4.5 4.9 5.3 

2021 17.0 3.1 5.1 6.1 7.8 9.9 12.2 13.1 14.5 15.6 17.0 

Table 5. Frequency results of rainfall depth (mm) at El-Hasana station. 

Return Period 

(year) 

Duration (min) 

5 10 20 30 60 120 360 720 1080 1440 

2 1.4 2.3 2.8 3.5 4.5 5.5 5.9 6.5 7.1 7.7 

5 2.6 4.4 5.3 6.7 8.5 10.5 11.2 12.4 13.4 14.6 

10 3.5 5.8 7.0 8.9 11.3 14.0 14.9 16.5 17.8 19.4 

20 4.3 7.2 8.7 11.1 14.0 17.4 18.6 20.5 22.2 24.1 

25 4.6 7.7 9.2 11.8 14.8 18.4 19.7 21.8 23.5 25.6 

50 5.4 9.1 10.9 13.9 17.5 21.8 23.3 25.7 27.8 30.2 

100 6.3 10.5 12.5 16.0 20.2 25.1 26.8 29.6 32.0 34.8 

200 7.1 11.8 14.2 18.1 22.9 28.4 30.4 33.5 36.3 39.4 

The probability distributions were analyzed to identify the distribution that best fits the annual rainfall data 

series. For all 54 stations, the gamma distribution provided the best fit. The gamma distribution was 

selected based on its statistically validated superiority over other distributions, its adaptability to regional 
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variations, and its consistent performance across all stations. These considerations ensure that the chosen 

model provides accurate and reliable rainfall estimates for engineering and hydrological applications across 

Egypt. Consequently, this distribution was used to estimate rainfall values for durations ranging from 5 

minutes to 1440 minutes (24 hours) and for return periods of 2, 10, 25, 50, 100, and 200 years. They 

provide a robust framework for addressing both current and future challenges posed by rainfall variability 

and climate change, ensuring that hydraulic structures and urban systems are resilient and sustainable. 

Table 5 illustrates the results of the frequency analysis for the El-Hasana station as an example. Similar 

analyses were conducted for the rainfall series from the remaining stations, ensuring a comprehensive 

understanding of rainfall patterns across Egypt. 

3.4. IDF curves 

The rainfall depths obtained from the frequency analysis were used to calculate rainfall intensity for 

various return periods (2, 5, 10, 20, 25, 50, 100, and 200 years) and durations ranging from 10 minutes to 

1440 minutes (Table 4). Rainfall IDF curves, which illustrate the relationship between rainfall intensity, 

duration, and frequency, were developed for specific rainfall stations. The curves were derived directly 

from the frequency analysis results without additional adjustments. A total of seven sets of IDF curves 

were constructed for selected locations. Figure 3 shows the IDF curves for the Saint Katherine station as 

an example. Importantly, although the IDF curve formulation is consistent across the analyzed stations, 

the specific intensity values vary significantly due to spatial variation in rainfall depths. 

 

Fig. 3. Maximum rainfall intensities for different time intervals and return periods at Saint Katherine station. 

Significant spatial variations in rainfall intensities were observed across Egypt's diverse climatic zones. These 

curves are essential tools for hydrological and hydraulic design, providing critical insights into the expected 

rainfall intensities over various durations and frequencies for engineering and water resource planning 

purposes. Previous IDF curves for Egypt, such as those developed for the Sinai Peninsula (Fathy et al. 2014), 

were based on limited datasets and did not account for recent climate trends. The IDF curves developed in 

this study incorporate updated rainfall data through 2024 and are based on advanced statistical techniques, 
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making them more accurate and reflective of current climatic conditions. These new IDF curves generally 

show higher rainfall intensities, particularly for shorter durations and higher return periods, compared to the 

older curves for the Sinai Peninsula, likely reflecting the impact of more recent and extensive data. 

3.5. Isopluvial maps 

Various short durations, up to 24 hours and return periods up to 200 years, were used to create isopluvial 

maps. These maps were generated using the Spatial Analyst tool of Arc-GIS. A raster surface is 

interpolated from points using the spatial analyst's inverse distance-weighted (IDW) approach. The IDW 

interpolation method is straightforward and easy to implement. It is based on the principle that objects 

adjacent to one another are more similar than those farther apart. Also, it assigns weights to sample 

points, such that the influence of one point on another declines with distance from the new point being 

estimated. A review of comparative studies of more than 70 spatial interpolation methods for 53 

comparative studies in environmental sciences concluded that IDW, ordinary kriging (OK), and ordinary 

co-kriging (OCK) are the most frequently used methods (Muhammad 2016). 

Isopluvial maps were developed for short durations of 5, 10, 15, 30, 60, 120, 360, 720, 1080, and 1440 

minutes for various return periods; 2, 5, 10, 20, 25, 50, 100, and 200 years. These maps were generated 

using the IDW interpolation method. The accuracy of the IDW-generated maps was evaluated using 

rainfall data from independent stations not included in the interpolation process. Cross -validation 

techniques were applied by withholding data from specific stations, interpolating rainfall values for those 

locations, and comparing the interpolated results with the observed rainfall data. Further, the results were 

qualitatively validated by comparing the interpolated maps with observed rainfall patterns at selected 

stations, ensuring alignment with real-world observations. While IDW is straightforward and effective for 

evenly distributed data, it may over-smooth rainfall estimates in areas with sparse or unevenly distributed 

stations, such as Egypt's desert regions. This sensitivity to station density highlights a potential limitation 

of IDW in capturing local extreme rainfall events, particularly in regions with complex terrain. However, 

these evaluations confirmed that the IDW method provided reliable estimates of rainfall intensity across 

Egypt. The resulting maps were demonstrated both with and without filling the contour, as illustrated in 

Figures 3 through 6. The spatial resolution of the generated maps is 1 × 1 km, ensuring sufficient detail to 

capture local variations in rainfall intensity. This resolution aligns with standard practices for hydrological 

applications and ensures that the maps are suitable for engineering design and water resource 

management. 

These maps highlight spatial variations in rainfall intensity across Egypt, offering essential tools for 

infrastructure planning. Figures 4-7 illustrate sample maps, which are valuable for identifying high-risk 

areas and optimizing the design of flood protection measures and hydraulic systems. These maps can be 

integrated into current engineering practices by providing precise rainfall intensity estimates at specific 

locations, aiding in the calibration of hydrological models and the design of drainage infrastructure tailored 

to local conditions.  
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Fig. 4. 1-hour isopluvial maps for a 2-year return period. 

    

Fig. 5. 6-hour isopluvial maps for a 25-year return period. 

For instance, urban planners can use these maps to design stormwater management systems capable of 

withstanding extreme weather events. To quantify the uncertainty associated with the isopluvial maps, 

confidence intervals were calculated for the interpolated rainfall values at a 95% confidence level, 

providing a range within which true values are expected to fall with a specified level of confidence. These 

intervals ensure the reliability of the maps for practical applications. Sensitivity analyses were performed 

by comparing the IDW interpolation method with alternative techniques, such as kriging and spline 

interpolation. The results demonstrated that IDW outperformed the other methods in accurately 

capturing spatial rainfall patterns for this dataset. However, the analyses also highlighted the importance of 
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considering alternative methods in future studies, particularly for regions with complex terrain or limited 

station coverage. 

    

Fig. 6. 12-hour isopluvial maps for a 100-year return period. 

    

Fig. 7. 18-hour isopluvial maps for a 200-year return period. 

3.6. Climate change implications 

The analysis conducted in this study revealed an increasing frequency of extreme rainfall events, consistent 

with global trends associated with climate change. These findings align with observations from previous 

studies that have documented shifts in rainfall patterns driven by rising global temperatures and changing 

atmospheric dynamics (Zittis et al. 2022). Specifically, the results indicate a notable increase in the 
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intensity and variability of short-duration rainfall events across various regions of Egypt, particularly in 

coastal and mountainous areas (Nashwan et al. 2019; Roushdi 2022). 

To quantify these changes, recent rainfall data (2000-2024) were compared with historical records (1968-

2000). The analysis shows a statistically significant upward trend in extreme rainfall intensities, with an 

average increase of 15-20% in maximum daily rainfall depths across the studied regions. The statistical 

significance of these trends was confirmed using the Mann-Kendall test, yielding p-values less than 0.05 

for most of the stations analyzed. These observed trends are supported by regional climate models, such 

as the Coordinated Regional Climate Downscaling Experiment (CORDEX) for Africa. Specifically, 

CORDEX projections under RCP4.5 and RCP8.5 scenarios indicate a 10-30% increase in extreme rainfall 

intensities by the end of the century, particularly in coastal and western regions of Egypt. These results 

highlight the need to revise existing design standards for hydraulic structures and adopt proactive 

strategies to address evolving climatic conditions. Incorporating satellite-based observations could further 

enhance adaptability by enabling real-time monitoring and extending coverage to remote areas. 

Furthermore, the spatial distribution of rainfall estimates in this study aligns with the high-resolution 

climatic zonation of Egypt developed by Hamed et al. (2022), which provides a reliable benchmark for 

validating the isopluvial maps. Comparing the interpolated rainfall depths with the observed data analyzed 

by Nashwan et al. (2019) further validates the accuracy of the IDW-generated maps. This study highlights 

the critical importance of continuous data updates and adaptive planning to enhance resilience against 

evolving climate challenges (Kourtis, Tsihrintzis 2022). 

4. Conclusions and recommendations 

This research introduces a comprehensive framework for rainfall estimation and infrastructure planning in 

Egypt. The analysis highlights an increasing frequency of heavy rainfall events and noticeable shifts in 

rainfall patterns, largely driven by climate change. This emphasizes the need to reassess the safety of 

existing hydraulic structures and incorporate updated rainfall analyses into the design of new structures. 

The methodologies outlined in this study provide practical guidelines for developing temporal and spatial 

distributions of rainfall, significantly contributing to improved water resource management and 

infrastructure planning. 

The findings reveal that certain regions in Egypt are particularly vulnerable to these changes. Coastal areas, 

such as the northern coast, and mountainous regions, like Saint Katherine, are experiencing statistically 

significant increases in short-duration rainfall intensity and variability. These regions, along with arid zones 

like the Red Sea coast, face heightened risks of flash floods and severe water runoff events, threatening 

critical infrastructure such as urban drainage systems, roads, bridges, and flood protection measures. 

Ungauged locations lacking sufficient monitoring infrastructure are particularly vulnerable, as they rely 

heavily on accurate rainfall estimates for effective planning and design. 

The proposed empirical formula, based on recent and extensive rainfall data, is more accurate than 

previously used reduction ratios. This improvement in accuracy is attributed to the incorporation of 
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updated records from 54 stations across Egypt, capturing a broader range of climatic variability and recent 

trends influenced by climate change. The formula facilitates precise runoff and discharge estimations, 

which are essential for designing hydraulic structures and supporting flood forecasting, particularly in 

ungauged locations. The alignment between the calculated GWRRI ratios and the WRRI ratios highlights 

the reliability of the new formula. For instance, at durations exceeding 120 minutes, the GWRRI formula 

provides more conservative and realistic estimates than the WRRI ratios, reducing overestimation or 

underestimation of rainfall depths. These refinements ensure that the new formula better reflects current 

climatic conditions and variability across Egypt. The formula was also tested against observed rainfall data 

from independent stations, confirming its reliability and robustness. This quantitative validation 

underscores its superiority over older methods, making it a practical tool for hydrological analysis and 

infrastructure design. These results facilitate precise runoff and discharge estimations, which are essential 

for designing hydraulic structures. They also provide critical meteorological support insights for flood 

forecasting, especially in ungauged areas. Furthermore, this research serves as a valuable resource for 

decision-makers, designers, engineers, and planners involved in water resource management and 

infrastructure development,  offering actionable insights to address evolving climatic challenges . 

The key contributions of the study include: 

• Development of a validated empirical formula for estimating short-duration rainfall depths, offering a 

practical tool for hydrological analysis. 

• Creation of isopluvial maps for critical durations and return periods, supporting infrastructure design 

and planning. 

• Identification of climate-driven changes in rainfall patterns, including a statistically significant increase 

in short-duration rainfall intensity and variability, particularly in coastal and mountainous regions. 

Despite these advancements, certain limitations must be acknowledged. The dataset is constrained by the 

availability and quality of rainfall records, particularly in remote and ungauged areas. Moreover, the 

empirical formula and isopluvial maps are based on historical data and may not fully capture future 

changes in rainfall patterns due to climate change. Uncertainties in interpolation methods, such as IDW, 

and the assumption of stationarity in frequency analysis also introduce potential biases. 

Based on these findings, it is recommended that decision-makers prioritize the updating of design storm 

standards for urban drainage and small-scale hydraulic structures, particularly in coastal and mountainous 

areas identified as high-risk. Engineers should use the developed empirical formula for more accurate 

short-duration rainfall estimation in ungauged basins. Furthermore, investment in expanding the ground-

based monitoring network and integrating satellite rainfall data is crucial for improving real-time 

monitoring and future climate change impact assessments. 
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Abstract 

In this study, the hydrology of Shahpur catchment is modeled to calculate the hydrological discharge of Shahpur Dam and to 

establish the water balance component using the Soil and Water Assessment Tool (SWAT) . Shahpur catchment is located on the 

Nandana River basin in Pakistan, about 45 km from Islamabad and 8 km north of Fateh Jang. The Arc SWAT 2012 version 

10.5.24, which was created for Arc Map 10.5, was used to delineate the study area and its sub-components, combine the data 

layers, and edit the model database and SWAT CUP SUFI2 algorithm for calibration and validation.. Calibration from 2000-2004 

and validation from 2006-2010 employed historic daily flow data and climatic data collected from the Shahpur Dam site office 

and Pakistan Meteorological Department (PMD) Islamabad. Based on literature reviews, 11 parameters with stronger influence 

on runoff were chosen. Nash-Sutcliffe efficiency (NSE), percent bias (PBIAS), and root-mean-square/standard deviation ratio 

(RSR) were used as statistical indicators. Results indicated satisfactory agreement between measured and simulated discharge 

values at yearly and monthly scales, demonstrating robust performance during both calibration (R² = 0.95) and validation  

(R² = 0.82) periods. The findings support the applicability of the model for effective watershed management in Shahpur based 

on favorable indicators and comparative outcomes. 
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1. Introduction 

Water is a key aspect for economic development, including agricultural and industrial expansion, 

particularly in the context of rapidly growing population and urbanization. Under changing land use and 

climate, sustainable water resource management and optimal allocation of water resources across multiple 

water uses are key difficulties that many civilizations are either facing or will confront in the next decades  

(Stehr et al. 2008). To address water management challenges, we must investigate and evaluate the many 

aspects of hydrologic processes occurring within the study area. Because all of these activities occur 

within separate micro-watersheds, the studies must be done on a watershed basis. For understanding the 

complicated hydrological response of a watershed and its direct relationship to climate, geography, 

geology, and land use, advanced mathematical models have been constructed. Water flows not just over 

the surface of land, but also underneath it in the unsaturated zone and even deeper in the saturated zone 

(Singh, Woolhiser 2002). Simulating these processes through a watershed model is essential for addressing 

a variety of water resource, environmental, and social issues. SWAT model predictions have been deemed 

computationally efficient by researchers (Neitsch et al. 2005). The tool has shown dependability in 

numerous regions throughout the world. Khan et al. (2014) used the SWAT model on a large scale to 
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examine hydrological processes in a mountainous environment of the Upper Indus River Basin, as well as 

in other Asian locations (Supit, Ohgushi 2012; Nasrin et al. 2013). 

Beroho et al. (2025) investigated the 9th April watershed in northern Morocco, a semi-arid region with 

limited hydrometeorological data. They integrated SWAT with projected land use-land cover (LULC) and 

climate scenarios to model future hydrological responses and sediment transport. Fadil et al. (2011) 

employed it in several African locations. Schuol et al. (2008) and Ashagre (2009) also used it in 

simulations. Kamuju (2019) studied the St. Joseph River watershed in the United States. SWAT is a GIS-

based watershed- or river basin-scale model that can represent both geographic diversity and physical 

processes within smaller modeling units known as hydrologic response units (HRUs) for the long -term 

planning and management of river surface water resources. Its predictions have been declared 

computationally effective by researchers (Neitsch et al. 2009). It has been proven to be reliable in a 

majority of places globally. 

2. Materials and methods 

2.1. Study area 

We selected the Shahpur Dam as a study site to perform hydrological modeling by using SWAT and GIS 

analysis. The dam site is located at 33°37'0'', 73°41'0''E in Fateh Jang Tehsil near the Kala Chitta Range in 

the Attock District, about 45 km from Islamabad and 8 km north of Fateh Jang, as shown in Figure 1. 

The dam was commissioned by the Small Dams Organization, Government of Punjab, in 1982 and was 

completed in 1986 at a cost of PKR 36.5 million. The main dam is a concrete gravity type with 0.6 m 

thick stone masonry skin and a centrally located spillway. There is an ungated ogee spillway in the middle 

of the dam for passing flood discharges. The capacity of the spillway is 1008 m3/s. This discharge is based 

on 230 mm rainfall, which is the maximum probable in 24 hours with a 1000-year return period. The 

width of the spillway is 85 m, which could easily handle a discharge of 460 m3/sec with a head of 3 m 

above the crest. A flip-type stilling basin was installed to dissipate the energy of falling water from the 

spillway. The reservoir of Shahpur Dam has a gross storage capacity of 14,320 acre-feet (17.7×106m3), of 

which 4,079 acre-feet (5.0×106m3) is dead storage capacity and the rest is live usable storage (Cheema, 

Bandaragoda 1997; Ghumman et al. 2019). 

2.2. Creation of database 

2.2.1. Time-based datasets 

SWAT requires climate data to supply moisture and energy inputs that govern the water balance and 

establish the key results of the various components of the hydrological cycle. Hydrological modeling 

requires long-term meteorological datasets of precipitation, temperature, wind speed, solar radiation, and 

relative humidity. The minimal essential inputs for the SWAT model are precipitation and temperature, 

whereas the remaining factors are optional. The model’s weather-generating feature allows it to create 
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data based on these inputs (Ghoraba 2015). Weather data (daily maximum and minimum temperature, 

relative humidity, and wind speed) of the study area is obtained from PMD Islamabad. 

The Shahpur Dam site office, located in Fateh Jhang, provided daily precipitation data. Historic daily flow 

data were provided for the years 2000-2004 for calibration and 2006-2010 for flow simulation validation. 

The monthly inflow to Shahpur Dam was measured at a station located near the dam. 

2.2.2. Spatial datasets 

Topography, land use-land cover, and soil composition are spatial datasets that characterize every land 

system and are essential for the hydrological model (Arnold et al. 1998). The input element of the SWAT 

model involves components of the land system that consist of DEM, land use, and soil (Ghoraba 2015). 

The DEM is downloaded from the Earth Explorer of the United States Geological Survey (USGS). Then, 

using the extract-by-mask feature, the study region is isolated from the large DEM file shown in Figure 2. 

For delineation, an SRTM DEM with resolution 30 m × 30 m was used. The automatic watershed 

delineation feature was applied to define the watershed. Landsat 8 satellite imagery was used to create a 

land use map through supervised classification, employing ERDAS IMAGINE 2012, as shown in Figure 

3 (Beroho et al. 2023). The water cycle is affected by changes in land use and vegetation; the impact 

depends on the species’ morphology and plant cover density. Four main classes have been defined. The 

most important groups are urban (4.84%), water (2.71%), barren (57.63%), and agricultural land 

(34.82%). The original land use classes were replaced with SWAT classes and specified using a lookup 

table. These conversions are presented in Table 1. For this research, two types of soil shown in Table 1 

were found in SWAT by using a soil map, which was downloaded from FAO maps. The study area was 

clipped by the clip feature in Arc GIS, also shown in Figure 4 (Malik et al. 2022). 

Table 1. Conversion of LULC to SWAT classes and soil classification. 

Sr. No. LULC classes Area [%] 
 

Sr. No. 
SWAT  

soil class 
Description Area [%] 

1 Built Up 4.84 
 

1 I-X-c-3512 
Gelic 
Regosols 

15.3489 

2 Water 2.71 
 

2 Rc40-2b-3843 
Haplic 

Chernozems 
84.6511 

3 Barren 57.63 
    

 

4 Vegetation 34.82 
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Fig. 1. Study area location on maps of Pakistan and the Attock District. 
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Fig. 2. Study area extraction and watershed delineation. 
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Fig. 3. Land use-land cover of Shahpur Catchment. LULC Mapping: LULC classes were mapped to SWAT land 

cover and soil classes using standard lookup tables, derived from FAO soil maps and Landsat 8 imagery, ensuring 

accurate representation of the catchment’s spatial characteristics. 

 

Fig. 4. Soil map of Shahpur Catchment. Mapping was performed using FAO soil maps and SWAT lookup tables.  

2.3. Model simulation 

The Shahpur Dam watershed hydrologic modeling was performed using Arc SWAT 2012 version 10.5.24, 

which was created for Arc Map 10.5. The model is ready for simulation once data files have been 

prepared, and all model inputs have been finalized. The simulation spans four years, from 2000 to 2004, 

which coincides with the availability of climatic data. 
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2.4. Model efficiency 

Model calibration and validation are important steps in the simulation, applied to evaluate parameter 

estimation outcomes. There are several approaches for assessing and evaluating the model’s efficiency. 

The coefficient of determination (R 2), root-mean-square error (RMSE), standard deviation ratio (RSR), 

Nash–Sutcliffe efficiency index (NSE), and percent bias (PBIAS) were used for calibration and validation 

(Moriasi et al. 2007; Fadil et al. 2011). 

2.4.1. Coefficient of determination (𝑅2) 

By following a best fit line, it is an excellent approach to indicate the consistency between observed and 

simulated data. Higher values indicate less error variance, and values greater than 0.50 are regarded as 

acceptable. It ranges from zero to 1.0 (Santhi et al. 2001; Van Liew et al. 2007). 

𝑅2 =
[∑ (𝑄𝑚,𝑗−𝑄𝑚)(𝑄𝑠,𝑗−𝑄𝑠)

𝑛
𝑖=1 ]

2

∑ (𝑄𝑚,𝑗−𝑄𝑚)
2
∑ (𝑄𝑠,𝑗−𝑄𝑠)

2𝑛
𝑖=1

𝑛
𝑖=1

 (1) 

Where Qs,j is the discharge flow’s simulated value, Qm,j is the discharge flow’s measured value, and Qm is 

the mean of the measured discharge flow; n is the length of the measured discharge, and Qs is the mean 

of the simulated discharge flow. 

2.4.2. Nash–Sutcliffe efficiency (NSE)  

NSE is a normalized statistical approach for predicting the relative level of noise vs data.  

𝑁𝑆𝐸 = 1 − [
∑ (𝑌𝑜𝑏𝑠

𝑖
−𝑌𝑠𝑖𝑚

𝑖
)2𝑛

𝑖=1

∑ (𝑌
𝑜𝑏𝑠
𝑖
−𝑌

𝑚𝑒𝑎𝑛
𝑖

)2𝑛
𝑖=1

] (2) 

Where Ysimi is the ith simulation, and Yobsi is the ith observation (stream flow), the mean of the actual 

data, Ymeani is the simulated value, and n is the sum of all observations (Nash, Sutcliffe 1970).  

2.4.3. Percent bias (PBIAS) 

PBIAS calculates the average tendency of simulated values to be greater or lower than observed values. 

The statistic ranges from –10 to +10. PBIAS has an optimum value of 0.0, with low-magnitude values 

indicating accurate model simulation. Positive values indicate model underestimation bias, whereas 

negative values suggest model overestimation bias (Gupta et al. 1999). 

𝑃𝐵𝐼𝐴𝑆 = [
∑ (𝑌𝑜𝑏𝑠

𝑖
−𝑌𝑠𝑖𝑚

𝑖
)𝑛

𝑖=1 ×100

∑ (𝑌
𝑜𝑏𝑠
𝑖
)𝑛

𝑖=1

] (3) 
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2.4.4. RMSE-RSR 

An RSR range of 0 to 0.5 indicates good performance for both the calibration and validation periods. The 

lower the value of RSR, the smaller the RMSE as normalized by the standard deviation of the data, 

indicating the precision of the model simulation (Singh et al. 2005). 

𝑅𝑆𝑅 =

√∑ (𝑌𝑜𝑏𝑠
𝑖
−𝑌𝑠𝑖𝑚

𝑖
)
2

𝑛
𝑖=1

√∑ (𝑌
𝑜𝑏𝑠
𝑖
−𝑌

𝑚𝑒𝑎𝑛
𝑖

)
2

𝑛
𝑖=1

 (4) 

3. Results 

3.1. Parameter sensitivity analysis 

After running the SWAT model, the model parameters must be calibrated and analyzed for sensitivity. 

Based on a literature review, 11 factors with stronger influence on runoff were chosen, supported by 

Arnold et al. (2012) and Abbaspour (2007). The (SUFI2) algorithm was used to determine the parameters 

in this project. To achieve the best match between the model’s output and the observed flow data, the 

model is repeatedly simulated by adjusting the evapotranspiration calculation technique and the values of 

hydrological parameters that were selected by the model. 

3.2. Model calibration and validation results 

The SWAT-CUP tool is one of the best tools for calibrating the SWAT model, and it is appropriate for 

assisting decision-makers in conceptualizing sustainable watershed management, allowing decision-makers to 

better calibrate the model (Mengistu et al. 2019). The simulated and actual surface runoff were compared for 

calibration. Only the fundamental scale and range of values generated by the model were verified using 

monitoring data. The exact value of calibrated hydrological parameters was utilized for validation after 

obtaining acceptable runoff data. Following that, the model’s performance with calibrated parameters was 

evaluated to recreate the hydrological functioning of the watershed over a period that was not employed in the 

calibration phase. The observed flow data obtained from the Shahpur Dam site office, recorded at a gauging 

station downstream from the Shahpur Dam on the Nandana River, were used for flow calibration and 

validation. The available data were compared to the projected results to determine the effectiveness of the 

SWAT simulation. The calibration was performed on a monthly and an annual basis using outflow data from 

2000 to 2004; the parameters were then validated between 2006 and 2010. To reduce the gap between the 

simulated and actual values, 11 model parameters (Table 2) were adjusted (Arnold et al. 2012). 

All sub-watersheds received a 2% increase in CN2, a 0.3% increase in ALPHA BF, a 0.1% increase in 

GW DELAY, a 0.5% increase in GWQMN, a 0.3% increase in SLSUBBSN, a 0.4% increase in 

SURLAG, a 3% increase in OV N, and a 0.35% increase in ESCO. SOL-AWC and CH N2, the starting 

parameters, were multiplied by 1.2 and 0.3, respectively (Abbaspour 2007). The calibration of the model 

for various water balance components produced satisfactory agreement (Gasirabo et al. 2023). 
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Table 2. Parameter descriptions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3. Graphical comparison of calibration and validation results 

Predicted and actual yearly flows over the calibration period are compared in Figure 5. The average flow 

for the simulated period was 11.89 m3/s, whereas the average actual flow over the same time was about 

13.00 m3/s. Maximum flow was in 2003; minimum flow was in 2000. Depending on the meteorological 

information obtained from the PMD, the simulation results demonstrate a good fit with peak and low-

flow periods. According to Figure 6, the flow results for the validation period indicate good agreement 

between observed and model-simulated data. The simulation’s average annual flow was 24.45 m3/s, 

whereas the average measured flow over the same period was 26.16 m3/s, a close match. The findings 

indicate that the model can be successfully applied to forecast annual average river flow levels. The 𝑅2 

statistics for calibration and validation, indicating the reliability of the findings, are displayed in Figures 7 

and 8, where 𝑅2 is 0.99 and 0.96, respectively, demonstrating that the model findings for both periods are 

excellent. The model’s annual stream flow data indicated a PBIAS of 1.8 for the calibration period and 

0.51 for the validation period. These numbers show that the model overestimated stream flow during the 

validation period while simulating stream flow with a less precise model during the calibration phase. RSR 

was 0.52 for the calibration period and 0.29 for the validation period, according to the data. Table 5 and 6 

provide summaries of the statistical analysis of simulated and actual yearly stream flow data. Based on 

NSE, the model results for calibration (0.91) and for validation (0.86) are both satisfactory. Monthly flow 

model results are also depicted in Figures 9, 10, 11, and 12 with 𝑅2 values that are quite acceptable. The 

modeled monthly stream flow data indicated a PBIAS of 0.34 for the calibration period and 0.08 for the 

Parameter Definition 
Modification 

method 

Initial 

range 

Optimal  

parameter value 

CN2 
Initial SCS runoff curve number for moisture 
condition  

r 35-98 96.24 

ALPHA_BF Base flow alpha factor v 0-1 0.52 

GW_DELAY Ground water delay(days) v 0-500 31 

GWQMN 
Threshold depth of water in the shallow 
aquifer required for return flow to occur 

v 0-5000 900 

SOL_AWC Available water capacity of the soil layer r 0-1 15 

SLSUBBSN Average slope length r 10-150 50 

SURLAG Surface runoff lag coefficient(days) r 0.05-24 3.93 

OV_N Manning‘s “n” value for overland flow r 0.01-1 5.98 

ESCO Soil evaporation compensation factor r 0-1 0.72 

EPCO Plant uptake compensation factor r 0-1 0.18 

CH_N2 Manning coefficient for main channel r -0.01-0.3 0.035 
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validation period. These numbers show that the model overestimated stream flow during the validation 

period while simulating stream flow with a less precise model during the calibration phase. RSR was 0.23 

for the calibration period and 0.31 for the validation period, according to the data. Table 3 and 4 provide 

summaries of the statistical analysis of simulated and actual monthly stream flow data. According to the 

NSE approach, the model results of 0.89 for calibration and 0.58 for validation are both satisfactory. The 

simulation underestimates the peak flow values experienced in January, May, and September. The location 

of the peaks was generally well-simulated for both the calibration and validation periods. If additional 

precipitation and temperature datasets from meteorological observatories with specific coverage of the 

research region were available, the model results might be enhanced significantly and achieve outstanding 

accuracy. Numerous studies have shown the SWAT model’s under-prediction of peak flows (Fadil et al. 

2011; Ghoraba 2015). 

Table 3. Statistical analysis of simulated and actual monthly stream flow for calibration. 

Calibration (2000-2004) Observed Simulated 

Mean 1.16 0.92 

R2 0.95 

NSE 0.89 

PBIAS 0.34 

RSR 0.23 

Table 4. Statistical analysis of simulated and actual monthly stream flow for validation. 

(2006-2010) Observed Simulated 

Mean 3.58 1.90 

R2 0.82 

NSE 0.58 

PBIAS 0.08 

RSR 0.31 

Table 5. Statistical analysis of simulated and actual annual stream flow for calibration. 

Calibration (2000-2004) Observed Simulated 

Mean 13 11.89 

R2 0.99 

NSE 0.91 

PBIAS 1.8 

RSR 0.52 

Table 6. Statistical analysis of simulated and actual annual stream flow for validation. 

(2006-2010) Observed Simulated 

Mean 26.16 24.45 

R2 0.96 

NSE 0.86 

PBIAS 0.51 

RSR 0.29 
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Fig. 5. Observed and predicted annual stream flow during the calibration period (2000-2004). 

 

Fig. 6. Observed and simulated annual stream flow during the validation period (2006-2010). 
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Fig. 7. Annual value of R2 for the calibration period (2000-2004). 

 

Fig. 8. Annual value of R2 for the validation period (2006-2010). 
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Fig. 9. Monthly flow model results for the calibration period (2000-2004). 

 

Fig. 10. Monthly flow model results for the validation period (2006-2010). 
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Fig. 11. Monthly value of R2 for the calibration period (2000-2004). 

 

Fig. 12. Monthly value of R2 for the validation period (2006-2010). 

3.4. Water balance components 

In addition to annual and monthly flow, the SWAT model assessed additional essential water balance 

components. According to (Sathian, Shyamala 2009), the most essential aspects of a basin’s water balance 

are precipitation, surface runoff, lateral flow, base flow, and evapotranspiration (Arnold et al. 1998). 

Except for precipitation, all of these variables require prediction to be quantified because their 

measurement is difficult. The average annual basin values for various water balance components 

throughout the model’s simulations of the calibration and validation periods are presented in Table 7, 

computed as a proportion of the annual rainfall average in Figure 13. Among these aspects, actual 

evapotranspiration (ET) generated the most water loss from the watershed. A high evapotranspiration 
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rate expected might be ascribed to the type of plant cover and high temperature associated with the 

location. For the calibration period, the average annual evapotranspiration is 0.31, and for the validation 

period, the value is 0.30. The quantity of stream flow leaving the watershed’s outflow during the time step 

is known as total water yield (WYLD). The majority of the rainfall received by the basin is lost as stream 

flow, as can be observed. On the other hand, for the calibration period, the ratio of the simulated average 

annual surface runoff to the average annual precipitation is 0.41 and 0.32 for the validation period. The 

lateral flow (Lat Q) was significantly impacted by the terrain slope. As the slope rises, the lateral flow, 

calculated as a proportion of annual rainfall average, is 1% for the calibration period and 13% for the 

validation period. Therefore, lateral flow is a crucial factor in river flow on sloping terrain. It has little 

effect on shallowly sloped ground. Deep aquifer recharging is substantial in all situations, with average 

percentages of 16% and 7% of total rainfall for both simulated periods. The water from the shallow 

aquifer that returns to the reach during the time step is known as groundwater contribution to stream 

flow (GWQ), and it varies greatly among streams. For both the calibration and validation periods, the 

average annual contribution of groundwater relative to precipitation is 11% and 18%, respectively. 

Table 7. Average annual water balance components. 

Months 
Rain 
[mm] 

Snow 
fall 

[mm] 

SURF Q 
[mm] 

LAT Q 
[mm] 

Water 
Yield 

[mm] 

ET 
[mm] 

Sed. 
Yield 

[mm] 

PET 
[mm] 

1 22.48 0 10.36 0.03 12.11 1.74 6.3 20.87 

2 37.52 0 21.66 0.03 26.21 4.66 14.7 30.16 

3 22.72 0 11.18 0.04 17.47 6.15 6.78 61.2 

4 21.92 0 6.22 0.04 11.32 11.68 3.43 91.67 

5 15.36 0 4.27 0.04 7.06 9.96 2.33 172.67 

6 42.24 0 16.65 0.04 17.08 20.66 10.03 162.62 

7 83.6 0 40 0.04 40.52 30 25.36 125.4 

8 71.34 0 31.87 0.05 36.33 26.66 20 105.67 

9 36.94 0 15.67 0.05 25.07 13.61 10.1 97.44 

10 18.24 0 9.46 0.05 16.03 4.03 5.91 76.75 

11 6.7 0 2.11 0.05 5.57 1.99 1.13 38.28 

12 17.84 0 9.04 0.04 11.86 1.73 5.54 20.18 

0 396.9 0 178.49 0.5 226.63 132.87 111.61 1002.91 
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Fig. 13. Average annual water balance as a relative percentage to precipitation. 

4. Conclusion and recommendations 

The current study attempted to simulate the influence of climatic change, LULC, soil, and topographic 

conditions on the Shahpur catchment using Arc SWAT 2012 and the input of long-term meteorological 

data, satellite data, soil data, and DEM images. The Shahpur catchment’s hydrologic model was calibrated 

and certified using the SWAT-CUP SUFI-2 program to improve the output so that it matches the 

reported discharge at the gauging station located near the Shahpur Dam site office (Brighenti et al. 2019). 

The observed flow data obtained from the Shahpur Dam site office, recorded by a gauging station 

downstream from the Shahpur Dam on the Nandana River, were used for flow calibration and validation. 

The SWAT model’s effectiveness and capability were determined by the hydrological study in this 

research project. The model’s efficiency was assessed using accurate calibration from 2000 to 2004 and 

validation from 2006 to 2010. The calibrated model can be used to investigate the effects of rising 

temperatures, land use change, and other management-relevant scenarios on streamflow and soil erosion 

proactively. To evaluate the effectiveness of the model, R2, Nash-Sutcliffe efficiency (NSE), percent bias 

(PBIAS) and RMSE factors were evaluated for both annual and monthly flows. On an annual basis, 

manual calibration was conducted first, followed by automatic calibration. On a monthly basis, the 

model’s calibration and validation generated satisfactory simulation results.  
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The validation R2 value for monthly stream flow was 0.82%, while the calibration R2 value was 0.95%, 

demonstrating the symmetric regression of the model. The NSE, which measures how well the model fit 

the observed data, was 0.58 for validation and 0.89 for calibration. The PBIAS parameter indicates 

underestimation, with calibration and validation results of 34 and 8%, respectively. The PBIAS parameter 

displays the difference between the simulated and observed amounts, with a value of 0 ideal. Positive 

values indicate underestimation, whereas negative values represent overestimation. The validation RMSE 

value was 0.31%, while the calibration R2 value was 0.23%, for monthly stream flow. The model’s yearly 

stream flow data indicated a PBIAS of 1.8 for the calibration period and 0.51 for the validation period. 

These numbers show that the model underestimated stream flow during the validation period while 

simulating the stream flow with precision during the validation phase. RSR was 0.52 for the calibration 

period and 0.29 for the validation period, according to the data. The average flow for the simulated 

period was 11.89 m3/s, while the average real flow was approximately 13.00 m3/s. The flow reached its 

peak in 2003, with the lowest flow occurring in 2000. The validation period flow result shows good 

correlations between observed and model-simulated data. The average yearly flow in the simulation was 

24.45 m3/s, while the average observed flow over the same period was roughly 26.16 m3/s, suggesting a 

striking match. The calibration of the model for various water balance components produced satisfactory 

agreement. The findings of this research suggest that precise water consumption data are required to 

produce a more accurate representation of water production and the availability of deep aquifer recharge 

resources with a reduced uncertainty range. Natural year-to-year variability owing to climate, as well as 

water abstraction and consumption, is included in the stated uncertainty. These results show that the 

model can correctly anticipate average annual and monthly stream flow levels. It was concluded from the 

results that if more reliable precipitation and temperature data sets from climatic observatories with good 

specific coverage of the research region were available, the model results might be greatly improved, with 

exceptional precision. The hydrological modeling of the Shahpur catchment using the SWAT model 

revealed important insights but also highlighted several gaps. Limitations in meteorological data restricted 

the model’s accuracy, suggesting the need for a more comprehensive dataset that includes additional 

climatic parameters. Additionally, the study primarily focused on surface water without integrating 

groundwater interactions. Finally, the absence of climate change scenarios indicates a critical area for 

future research to support effective water resource management. The SWAT model operates on several 

assumptions about hydrological processes that may not hold true in all contexts. These assumptions could 

limit the applicability of the model results to other similar catchments. Future research should prioritize 

enhanced data collection by establishing more meteorological stations to improve model accuracy and 

real-time monitoring. Integrating advanced remote sensing technologies would provide timely data on 

land use and vegetation changes. A comprehensive approach using coupled surface and groundwater 

models is recommended to better understand the hydrological cycle. Previous studies in hydrological 

modeling have often focused on general applications of the SWAT model in various regions, but many 

have lacked comprehensive calibration and validation specific to localized settings like the Shahpur 
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catchment. This research provides a hydrological model tailored for the Shahpur catchment, facilitating 

improved water resource management in a rapidly urbanizing region. The successful calibration and 

validation of the SWAT model enhance predictive capabilities for streamflow under varying climatic and 

land use scenarios. Moreover, the findings underscore the importance of localized data integration, which 

can inform future watershed management strategies and contribute to sustainable development in water-

scarce areas. By addressing specific challenges related to water resource allocation, this study contributes 

valuable insights for policy-making and environmental planning. We propose that this model be 

employed for Shahpur watershed management based on its robust performance and comparative 

outcomes. 

Most existing studies focus on large river basins, leaving a contextual and methodological gap in applying 

and validating SWAT in semi-arid regions with limited historical data. This study addresses these gaps by 

successful calibration and validation of the SWAT model using available data from 2000-2010 for the 

Shahpur catchment. The results show strong model performance and highlight the model’s potential for 

effective watershed management. The study is limited by the unavailability of recent meteorological and 

discharge data, as well as the exclusion of dynamic land use and climate change scenarios. Despite these 

limitations, the study contributes significantly by establishing a baseline framework for future hydrological 

modeling in similar environments. We recommend that future research should incorporate high-

resolution, more detailed climate and land use datasets, investigate groundwater–surface water 

interactions, and apply scenario-based modeling to assess the long-term impacts of climate variability and 

land use change on watershed hydrology. 

Abbreviations 

CUP  Calibration and Uncertainty Programs 

D_RECH Deep Recharge 

DEM Digital Elevation Model  

ET Evapotranspiration 

GWQ Groundwater Contribution to Streamflow 

LATQ Lateral Flow 

NSE Nash–Sutcliffe Efficiency  

PBIAS Percent Bias 

PET Potential Evapotranspiration 

PMD Pakistan Meteorological Department  

RMSE  Root Mean Square Error  

RSR Ratio of RMSE to the standard deviation 

SUFI Uncertainty in Sequential Uncertainty Fitting 

SURQ Surface Runoff 

SWAT Soil and Water Assessment Tool 
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Abstract 

Flash floods pose a significant risk to infrastructure in Kosovo, particularly in urban and riverine areas. This research focuses on 

an intense river flood event that took place on January 19, 2023, in the Skenderaj catchment. The study’s main goal was to 

establish a flash flood early warning system by combining sophisticated atmospheric modeling, hydrological evaluation, and 

rainfall hazard analysis. The ARW model with 2-km resolution effectively captured rainfall intensity and local flood occurrences, 

particularly around Skenderaj and Istog, whereas the 4-km NMM model better represented wider spatial precipitation patterns. 

Hydrological results demonstrated that precipitation strongly dictated river discharge and runoff dynamics, with the highest flows 

recorded in northern Albania. To validate and enhance forecast accuracy for flash flood warnings, datasets from the Global Flood 

Awareness System (GloFAS), the European Flood Awareness System (EFAS), and ERA5 reanalysis were incorporated. These 

resources provided essential information on antecedent conditions, such as soil moisture and snowmelt, which substantially 

influenced runoff and flood magnitude. The ECMWF Copernicus framework also contributed by supplying 24-hour river 

discharge forecasts for Kosovo’s basins, aiding in timely and spatially detailed flood alerts. The Novel Thunderstorm Alert System 

(NOTHAS) was updated to integrate crucial hydrological variables – including surface and convective runoff, snow water 

equivalent, soil moisture, and slope – thereby enhancing the precision of flood warnings. This improved system enabled effective 

classification of flood risk zones, thus identifying areas vulnerable to flash floods and landslides. The study highlights the crucial 

role of high-resolution weather modeling, hydrological insights, and integrated early warning systems in enhancing flash flood 

prediction and mitigation efforts. 
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1. Introduction 

Ongoing shifts in global climate patterns have intensified the occurrence and severity of extreme weather 

phenomena, notably intense storms and flash floods. Such events pose escalating risks to populations, 

infrastructure, and economies, especially in regions characterized by complex terrain and limited 

hydrological infrastructure. In Kosovo and the broader Balkan Peninsula, the frequency and intensity of 

convective storms during the warmer months have increased, often triggering extreme precipitation and 

subsequent flash flood events. The rapid development of these hydrometeorological hazards necessitates 

advancements in accurate forecasting models, robust early warning systems (EWS), and comprehensive 

flood risk management frameworks (Archer et al. 2006; Borga et al. 2007). 

Numerical weather prediction (NWP) tools, including the Weather Research and Forecasting (WRF) 

model, have become pivotal in simulating convective processes and forecasting heavy rainfall episodes. 
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However, flash flood prediction remains challenging due to the complex coupling between atmospheric 

dynamics and hydrological responses. The accuracy of WRF-based forecasts is strongly influenced by 

model setup parameters such as initial and boundary conditions, spatial resolution, and microphysical 

parameterizations, particularly for local convection (Lee, Hong 2006; Skamarock et al. 2008; Spiridonov et 

al. 2020, 2023). To improve flood forecasting methodology, it is essential to integrate meteorological 

forecasts with hydrological models that convert precipitation into surface runoff and streamflow. Coupled 

meteorological-hydrological-hydraulic modeling frameworks have shown promise in generating timely and 

skillful flash flood predictions (Varlas et al. 2023). Furthermore, efforts to optimize microphysics schemes 

within WRF enhance rainfall estimations in basins lacking dense observational networks . 

Effective flash flood early warning systems rely on continuous monitoring through ground stations, remote 

sensing platforms, and hydrological networks. Unfortunately, in Kosovo and similar regions, real-time 

observational data are often sparse or incomplete, hindering accurate flood detection and early warnings 

(Cluckie, Han 2000; Thielen et al. 2009; Hapuarachchi et al. 2011). Integration of satellite precipitation 

products, such as GPM-IMERG, with radar and hydrological data has improved early warning system 

capabilities (Giannaros et al. 2022). Large-scale forecasting and early warning systems such as the Global 

Flood Awareness System (GLOFAS) (Alfieri et al. 2013), the European Flood Awareness System (EFAS) 

(Thielen et al. 2009), and reanalysis datasets like ERA5 (Hersbach et al. 2020) provide valuable inputs for 

flood risk assessment and decision-making. In addition to hydrometeorological forecasting, geospatial 

techniques play a crucial role in flood hazard mapping and vulnerability assessment. Advances in Geographic 

Information Systems (GIS) and machine learning methods have enhanced spatial flood risk analyses, 

supporting improved urban planning and land-use policies. The increasing vulnerability to flooding due to 

climate change is exacerbated by anthropogenic activities such as uncontrolled urban growth, deforestation, and 

modifications of natural waterways, which reduce landscape permeability and increase flood exposure (Kane, 

Shogren 2000; Dobler et al. 2012; Didovets et al. 2019; Moragoda, Cohen 2020). Previous research by Osmanaj 

et al. (2025) focused on evaluating the performance of the WRF non-hydrostatic model in simulating the severe 

flash flood event that occurred on June 24, 2023, at Peja in northeastern Kosovo, during which more than 54 

mm of rainfall was recorded within two hours.  

This study analyzes a winter flash flood event that struck the small catchment of Skenderaj on January 19, 

2023 (see Agaj et al. 2024; Osmanaj et al. 2025). The main objective is to develop a flash flood early 

warning system by integrating high-resolution atmospheric modeling using the WRF model, hydrological 

simulations, and hydrometeorological hazard assessments. This integrated approach aims to enhance the 

accuracy of flash flood forecasting methodologies and improve operational early warning capabilities in 

data-scarce regions. By combining meteorological modeling, hydrological analysis, and geospatial risk 

assessment, this research aims to contribute to the development of more accurate flash flood forecasting 

methodologies and improved early warning capabilities. 

The structure of this paper is as follows: Section 2 presents the observational analysis of the event, Section 

3 details the numerical modeling approach, Section 4 discusses the simulation results with validation 
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against observations, and Section 5 concludes with recommendations for enhancing flood risk 

management strategies. 

2. Motivation 

Flooding has become an increasingly frequent and devastating phenomenon across Kosovo and the 

broader Balkan region, particularly during spring and summer. In 2023 alone, Kosovo experienced two 

major flood events, in January and June, causing extensive damage to cities such as Skenderaj, Mitrovica, 

Peja, and Podujeva. These floods resulted in significant economic losses, infrastructure damage, and 

human casualties, underscoring the urgent need for improved flood management and mitigation strategies. 

The increasing frequency and severity of floods are linked to climate change, which has disrupted 

hydrological patterns and intensified extreme weather events. Rising global temperatures contribute to 

unpredictable rainfall distributions, leading to both prolonged droughts and extreme precipitation. The 

2019-2021 Climate Change Strategy Action Plan for Kosovo acknowledges these risks, yet flood 

management remains hindered by inadequate infrastructure, incomplete flood risk mapping, and 

insufficient early warning systems. 

Additionally, human factors such as poor urban planning, riverbed degradation, and inadequate 

stormwater infrastructure have exacerbated flood risks. Unregulated construction, deforestation, and the 

concretization of river channels have reduced the land’s natural ability to absorb excess water, increasing 

the likelihood of urban and riverine flooding. 

Given these challenges, there is a pressing need for comprehensive flood risk assessment, improved early 

warning systems, and climate adaptation strategies. Strengthening institutional coordination, investing in 

resilient infrastructure, and integrating hydrometeorological data into urban planning are critical steps 

toward mitigating future flood impacts and enhancing community resilience. Recent extreme rainfall 

events have demonstrated the inadequacy of current flood forecasting and warning systems in Kosovo. 

The flood event on January 19, 2023, led to river overflows, while the June 24, 2023, urban flood in Peja 

highlighted the vulnerability of city infrastructure. The need for an integrated, real-time flash flood early 

warning system is crucial for mitigating future risks. 

3. Methods 

The main objectives of this research are: 

1. To evaluate the most suitable model configuration for accurately simulating the atmospheric behavior 

and physical processes associated with torrential rainfall over Kosovo. 

2. To develop an algorithm for an integrated hydrometeorological hazard module for early flash-flooding 

warning  
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Fig. 1. Domain configuration of the WRF-NMM (Non-hydrostatic Mesoscale Model) single-model setup over 

southeastern Europe, illustrating nested grid spacings of 4 km, 3 km, 2 km, and 1 km. The central blue rectangle 

highlights the location of Kosovo within the model domain. 

 

Fig. 2. WRF-ARW (ARW) triple-nested model domain configuration: the outermost domain (D1) covers central 

Europe with an 18 km grid resolution, the intermediate domain (D2) captures southeastern Europe at 6 km 

resolution, and the innermost domain (D3) focuses on Kosovo with a 2 km grid. 

To address these objectives, a series of high-resolution simulations was performed using the Weather 

Research and Forecasting (WRF) model. The procedure included sensitivity testing of physical schemes 

and resolutions, using both ARW and NMM dynamic cores (Janjic 2003; Kain et al. 2006; Lee, Hong 
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2006; Han, Hong 2018). Hourly warnings and rainfall outputs were compared with historical observations 

and flash-flood guidance thresholds (Spiridonov et al. 2021; Liu et al. 2018). 

3.1. Meteorological model framework 

The WRF model was selected for its robust treatment of atmospheric processes and flexibility in spatial 

and physical configurations. It supports both single- and nested-domain simulations and includes a wide 

range of physics options, such as the Thompson microphysics scheme (Thompson et al. 2008; Thompson, 

Eidhammer 2014), Yonsei University PBL (Hong 2010), Monin-Obukhov surface layer physics (Janjic 

1996), RRTM longwave radiation (Mlawer et al. 1997), and Dudhia shortwave radiation (Dudhia 1989). 

The ARW core (Skamarock et al. 2008) was applied in a triple-nested configuration (18×6×2 km) 

optimized for resolving convective-scale dynamics over Kosovo. The NMM core (Janjic 2003) was tested 

in single-domain setups with horizontal resolutions of 1 km, 2 km, 3 km, and 4 km (Fig. 1), echoing 

strategies used in regional storm-scale studies (Xue, Martin 2006; Schwartz et al. 2015). 

The ARW nested run shown in Figure 2 was configured with time steps of 30, 10, and 3.3 seconds across 

the three domains, while NMM runs used shorter steps (down to 2 seconds) to maintain numerical 

stability. The experiments explored variations in microphysics (e.g., WSM6, Ferrier), cumulus schemes 

(e.g., Shin, Hong 2015), and vertical levels (32 layers), consistent with prior optimization studies (Misenis, 

Zhang 2010; Chawla et al. 2018; Chinta et al. 2021). All simulations were initialized with GDAS/FNL 

0.25° global datasets, updated every 6 hours (Bernadet et al. 2000; Elmore et al. 2002; Kain et al. 2006). A 

spin-up period of 18 hours preceded each run to allow model stabilization before the targeted flood event 

onset (Jankov et al. 2007; Liu et al. 2021). Table 1 summarizes the domain configurations, model cores, 

physical parameterizations, and initialization data used in each of the eight experimental setups. 
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Table 1. Model setup and key parameters used in numerical experiments. 
P

a
ra

m
et

er
 

E
x

p
 

1 2 3 4 5 6 7 8 

Type of 

experiment 

Simulation 
Triple-nested 

run 

Simulation 
Single 

domain 

Simulation 
Single 

domain 

Simulation 
Single 

domain 

Simulation 
Single 

domain 

Simulation 
Single 

domain 

Simulation 
Single 

domain 

Simulation 
Single 

domain 

Model 

dynamics 

ARW 
Skamarock et 

al. (2008) 

NMM 
Janjic 

(2003) 

NMM NMM NMM NMM NMM NMM 

Model 
microphysics 

28 

Thompson, 
Eidhammer 

(2014) 

8 
Thompson 

et al. (2008) 

8 
3 

Ferrier 

(1994) 

8 
Thompson 

et al. (2008) 

8 

6 

WSM6 
Hong, Lim 

(2006) 

8 

PBL-scheme 

1 
Yonsei Univ. 

YSU 
Hong (2010) 

1 1 1 

2 

Mellor-
Yamada 

Janjic 
(2001) 

1 1 1 

Surface 
physics-schemes 

1 

Monin-
Obukhov  

Janjic (1996) 

1 1 1 

2 
Monin-

Obukhov 
(Janjic Eta) 

Janjic 
(1996) 

2 1 1 

Cumulus 

parameterization 

14 

Shin, Hong 
(2015); Han et 

al. (2016) 
14,14,0 

0 

0 
Explicit 

treatment of 
convection 

0 0 0 0 0 

Long-wave 
radiation 

1 
RRTM 

Scheme 
Mlawer et al. 

(1997) 

1 1 1 1 1 1 1 

Short-wave 

radiation 

1 

Dudhia (1989) 
1 1 1 1 1 1 1 

Hor. Grid res. 18×6×2km 4-km 
4 km (larger 

domain) 
3 km 2-km 

2-км 
(larger 

domain) 

1 km 
1 km 
(larger 

domain) 

Ver. Grid. Res. 32 32 32 32 32 32 32 32 

Time step (dt) 30×10×3.3 s 8 s 8 s 6 s 4 s 4 s 2 s 2 s 

Sim. Lead time 60 h 60 h 60 h 60 h 60 h 60 h 60 h 60 h 

Total grid points  

e_we 
e_sn 

e_vert 

113,190,15181

, 124, 136 
44,44,44 

100 

150 
44 

250 

300 
44 

100 

150 
44 

100 

150 
44 

200 

250 
44 

100 

150 
44 

200 

250 
44 

Initial data and 

LBC 
GDAS FNL 

GDAS 

FNL 

GDAS 

FNL 

GDAS 

FNL 

GDAS 

FNL 

GDAS 

FNL 

GDAS 

FNL 

GDAS 

FNL 

3.2. Design of an integrated hydrometeorological module for a flash-flood warning 

system 
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A robust river flood forecasting methodology has been developed by integrating meteorological, 

hydrological, and topographic parameters, enabling accurate prediction of flood risk during extreme 

weather events in Kosovo. This approach incorporates accumulated rainfall (mm/24 h), storm surface 

runoff (kg/m²), river discharge (m³/s), soil moisture (kg/m²), snowmelt equivalent (kg/m²), and terrain 

slope-surface roughness (m), each weighted according to expert judgment and regional statistical analysis. 

These parameters are normalized and combined into a composite flood risk index using a weighted 

scoring function that reflects their individual contributions to flood generation.  

An integrated approach is applied by combining ECMWF high-resolution forecast river discharge or 

ERA5 reanalysis discharge data with WRF-ARW model outputs to enhance the accuracy of flood risk 

predictions for Kosovo. This approach avoids the use of separate rainfall-runoff models, relying instead 

on discharge data from ECMWF and meteorological fields from WRF to predict flood risk levels. ERA5 

provides river discharge data at a 0.25° resolution, while ECMWF high-resolution forecasts offer more 

detailed discharge estimates at finer spatial resolution (e.g., 0.1°). These datasets are essential for assessing 

river flow conditions across the Kosovo domain. To ensure consistency, ERA5 discharge data (typically 

provided at 24-hour intervals) is resampled to match the 3-km spatial resolution and forecast intervals 

(e.g., hourly or every 3 hours) of WRF-ARW model outputs. This is accomplished through interpolation 

techniques such as bilinear or cubic spline interpolation to ensure spatial and temporal alignment. 

WRF-ARW outputs include key meteorological fields necessary for flood risk estimation. The integrated 

system combines these fields with river discharge observations to calculate a multivariate cumulative 

distribution function (CDF), used for classifying flood risk based on historical reference values and critical 

thresholds. Among the variables, river discharge is especially important for identifying areas where flow is 

likely to exceed channel capacity, signaling heightened flood risk and triggering alerts within the flash 

flood early warning system. 

3.2.1. Multivariate CDF for flood risk assessment 

The multivariate cumulative distribution function (CDF) is used to compute the composite flood risk score. 

Let 𝑋 = (𝐴𝑅, 𝑅𝑂, 𝑄, 𝑆𝑀, 𝑆𝑀𝐸, 𝑆𝐿) represent the vector of the key hydrometeorological parameters, and 

𝑇 = (𝑇𝐴𝑅 , 𝑇𝑅𝑂 , 𝑇𝑄,𝑇𝑆𝑀 , 𝑇𝑆𝑀𝐸 , 𝑇𝑆𝐿) represent their corresponding thresholds. The cumulative distribution 

function FFloodRisk for the flood risk, considering the parameters and their thresholds, is expressed as: 

𝐹𝐹𝑙𝑜𝑜𝑑𝑅𝑖𝑠𝑘(𝑥𝐴𝑅 , 𝑥𝑅𝑂 , 𝑥𝑄 , 𝑥𝑆𝑀 , 𝑥𝑆𝑀𝐸 , 𝑥𝑆𝐿) = 𝑃(𝐴𝑅 ≤  𝑥𝐴𝑅  , 𝑅𝑂 ≤  𝑥𝑅𝑂 , 𝑄 ≤  𝑥𝑄 , 𝑆𝑀 ≤  𝑥𝑆𝑀 , 𝑆𝑀𝐸 ≤

 𝑥𝑆𝑀𝐸 , 𝑆𝐿 ≤  𝑥𝑆𝐿 , ) (1) 

To capture the influence of the thresholds and the weighted contributions of each parameter, the CDF can 

be expanded by incorporating the normalized values of the parameters and their weights. The weight for 

each parameter is calculated as: 
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𝜔𝑖 =
𝑓𝑖(𝑥𝑖,𝑇𝑖)

𝑚𝑎𝑥(𝑓𝑖(𝑥𝑖,𝑇𝑖))
 (2) 

where: 𝜔𝑖  represents the normalized weight for parameter iii; 𝑓𝑖(𝑥𝑖,𝑇𝑖) is the probability density function 

(PDF) or cumulative distribution of parameter iii based on its threshold 𝑇𝑖; 𝑚𝑎𝑥(𝑓𝑖(𝑥𝑖 , 𝑇𝑖)) normalizes 

the weight to ensure it sums up appropriately. 

The final multivariate CDF for the flood risk is: 

𝐹𝐹𝑙𝑜𝑜𝑑𝑅𝑖𝑠𝑘(𝑥𝐴𝑅, 𝑥𝑅𝑂, 𝑥𝑄, 𝑥𝑆𝑀 , 𝑥𝑆𝑀𝐸 , 𝑥𝑆𝐿) = ∏ (
𝑓𝑖(𝑥𝑖,𝑇𝑖)

𝑚𝑎𝑥(𝑓𝑖(𝑥𝑖,𝑇𝑖))
)

𝜔𝑖
6
𝑖−1  (3) 

where: the product is taken over all five parameters (AR, RO, Q, SM, SME, SL); 𝑓𝑖(𝑥𝑖 , 𝑇𝑖 ) is the distribution 

function corresponding to the parameter ii; 𝜔𝑖  is the weight applied to each parameter. 

The Composite Flood Risk Score (CRI) is then derived from the CDF, which quantifies the overall flood 

risk. It is calculated using: 

𝐶𝑅𝐼 = ∑ 𝜔𝑖 ∙6
𝑖−1 𝑓𝑖(𝑥𝑖 , 𝑇𝑖) (4) 

Here: 𝐶𝑅𝐼 is the Composite Risk Index, representing the total flood risk; 𝜔𝑖  is the weight assigned to each 

parameter; 𝑓𝑖(𝑥𝑖 , 𝑇𝑖) is the cumulative distribution function for each parameter. 

The CRI is then categorized into three risk levels that correspond to different flood severity levels: 

• Low Risk: CRI ≤ 0.3 – Minimal risk of flooding. 

• Medium Risk: 0.3 < CRI ≤ 0.6 – Potential for localized to significant flooding. 

• High Risk: CRI > 0.6 – Severe to catastrophic flooding expected. 

The CRI is continuously updated using real-time data from the WRF model and local hydrological 

observations, allowing for timely flood alerts when the CRI exceeds thresholds for higher-risk categories. 

These alerts are disseminated to relevant authorities and the public via the integrated geo-hazard alert 

system, providing a comprehensive flood forecasting tool. 

Model outputs, including 24-hour accumulated precipitation, surface runoff, river discharge, soil moisture, 

and snowmelt (snow water equivalent), are processed to generate flood hazard maps at 12-hour intervals. 

These maps categorize flood risk into three zones: low (yellow), moderate (orange), and high (red). 

Additionally, population impact is assessed, ranging from low (<1K) to high (>10K). For instance, 

Skenderaj was identified as a high-risk area on both January 18 and 19, 2023, with a moderate population 

impact (1K – 10K affected individuals). 

Geographic Information System (GIS)-based analysis was used to overlay model outputs with terrain 

characteristics, soil types, and land use. This integrative approach identified areas prone to flash floods, 

landslides, and severe soil erosion. The performance of the hydrological model was validated by 
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comparing simulated flood extents and discharge rates with historical flood records and field observations, 

ensuring its reliability in predicting extreme events. 

4. Results 

4.1. Simulation of rainfall patterns 

The interpretation of results begins with analyzing total precipitation amounts over 24, 48, and 60 hours, 

obtained from the ARW triple-nested run (Fig. 3). 

The simulation with the 2-km nested run provides a more realistic depiction of accumulated precipitation 

over Kosovo. Based on rainfall patterns, the highest precipitation amounts occurred between January 19 

at 00 UTC and January 20 at 00 UTC, primarily in the northwestern regions of Kosovo. The total 60-hour 

accumulation in Istog, the westernmost location, exceeded 130 mm, while in Skenderaj, where flooding 

was recorded, the total reached 44.1 mm. 

 

Fig. 3. ARW forecast of total accumulated precipitation (mm) over 24, 48, and 60 hours, with the 2-km run shown in 

the upper panels and the 6-km run in the lower panels. 

The 6-km run captured the spatial distribution of precipitation reasonably well, but underestimated the 

accumulated amounts, with 55.4 mm for Istog and 33.6 mm for Skenderaj. The relative rainfall intensities 

for both nested runs can be assessed using the time series of hourly rainfall (mm) (Fig. 4a-b). The ARW 2-

km nested run (Fig. 4a) indicates two peaks of intense hourly precipitation: one on January 18 from 05-06 

UTC in Istog (white curve) and another during the intense rainfall period on January 19 from 10-11 UTC. 

For Skenderaj, two smaller peaks are observed on January 18, from 07-08 UTC, with intensities of 6.4 

mm/h and 5 mm/h, and another from 08-09 UTC, both with relative intensities of 4 mm/h. The 6-km 

run shown in Figure 4b, covering a larger area, captured the timing of the peaks in Istog and Skenderaj but 

underestimated the hourly precipitation amounts. 
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a)  

b)  

Fig. 4. Time series of relative rainfall intensities during the simulation period using (a) the ARW 2-km (upper chart) 

and (b) the ARW 6-km (lower chart) run. 

In the NMM model simulations, in addition to total precipitation, snowfall amounts are also included. 

Among all numerical experiments, starting with the 1-km, 2-km, and 4-km grid resolutions for smaller and 

larger areas, and the 3-km resolution for a uniform area, the experiment with the 4-km resolution 

provided the most realistic results. The integration domain covers a larger area of Southeast Europe, 

including various geographical regions such as the Adriatic, Ionian, and Aegean Seas, parts of the Alps, the 

Dinarides, and the mountainous complexes of western Macedonia, as well as the complex topography and 

landscapes of the area. For this reason, the model maps of accumulated precipitation and relative 

intensities are presented in Appendix A, allowing readers to become more familiar with the rainfall 

patterns and time series. Here, we focus on interpreting the results for the NMM 4-km integration, with a 

time step of 8 seconds and explicit treatment of convective processes. The simulation over a larger area 

with a 4 km horizontal resolution shows widespread rainfall over the central Balkans and the southern 

part of the Apennine Peninsula. It is evident that in some areas of Herzegovina and Montenegro, the total 

precipitation amounts exceed 100 mm over the 60 hours, while the model shows around 200 mm in 

northern Albania. Based on the model results, no significant precipitation amounts were observed in 

Kosovo during the first 24 hours of the simulation, except for the extreme western mountainous region. 

However, in the next 24-48 hours, the total precipitation amount increases significantly. The largest 
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simulated 60-hour total is in Pristina (around 59.2 mm), while in Skenderaj, it is 42.2 mm, which is very 

similar to the ARW 2-km run. It is important to note that the NMM 4-km model calculated maximum 

hourly precipitation for Skenderaj as 17.1 mm, during the period when the flood occurred. In contrast, the 

ARW 2-km nested run underestimated the maximum hourly precipitation about 2-fold. The difference is 

that the two peaks correspond to the location of Istog. Additionally, the total 60-hour accumulated 

precipitation was 2.5 times higher than that obtained using the NMM 4-km model. The ARW model uses 

the Thompson, Eidhammer (2014) microphysics scheme, the Yonsei Univ. (YSU) PBL scheme for 

parameterization of the atmospheric boundary layer (Hong 2010), and a scale- and aerosol-aware 

convective parameterization scheme (Shin, Hong 2015; Han et al. 2016) for the 18 and 6-km grid. The 2-

km run was performed with explicit treatment of convection, avoiding parameterization. On the other 

hand, the NMM 4-km run utilizes the Thompson microphysics scheme without convection 

parameterization. It is evident that the ARW model better reproduced the spatial distribution of total 

precipitation amounts, while the NMM model more accurately detected the relative precipitation 

intensities. As for the snowfall shown over the accumulated 24, 48, and 60 hours, it is evident that during 

the first 24 hours, snowfall occurs over the Alps, central parts of the Apennine Peninsula, and the 

Dinarides. In the next 24 hours, snow accumulates over the northwestern parts of Kosovo, western 

Macedonia, and toward Greece. With the passage of the cold front, a larger portion of the central Balkans 

experienced increased snow accumulation. 

 

 

Fig. 5. NMM forecast of total accumulated rain (upper) and snow (lower) in mm for southeastern Europe, with 24, 

48, and 60 hours lead time. The model was initialized on January 18, 2023, at 00 UTC. 
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Fig. 6. Time series of rainfall intensities at five locations during the simulation period using the NMM 4-km run. 

4.2. Prototype evaluation of a multi-source hydrometeorological flood early warning 

system 

To demonstrate the capabilities of the newly developed early warning methodology, a prototype 

hydrometeorological flood alert system was applied to a significant precipitation event that affected 

Kosovo on January 18-19, 2023. This system integrates high-resolution numerical weather prediction 

outputs with key hydrological and geomorphological parameters to assess flood potential with improved 

spatial and temporal accuracy. 

The geo-hazard mapping framework was designed to evaluate flood susceptibility based on cumulative 

impacts from both prolonged stratiform and short-duration convective rainfall. The Novel Thunderstorm 

Alert System (NOTHAS) (Spiridonov et al. 2021, 2022, 2023) was used to forecast convective activity and 

issue corresponding alerts. Numerical experiments revealed that NOTHAS, running at a 4 km spatial 

resolution with a 36-hour lead time, effectively identified zones of significant instability. As shown in 

Figure 7, a Level 3 flood alert was issued across much of Kosovo during the peak rainfall period on 

January 19, capturing the critical timing and spatial extent of the event. In parallel, alternative model 

configurations also detected areas of potential localized flooding, although some underestimations were 

noted – particularly in simulations using the NMM model with smaller domain coverage. These results 

emphasize the importance of domain configuration and model selection in operational forecasting. To 

enhance the precision of flood risk evaluation, additional analysis was conducted using a flood risk 

potential mapping (FRPM) algorithm. This tool integrates WRF-ARW model outputs with geospatial data 

including terrain slope, digital elevation models (DEMs), drainage density, river proximity, land use 

characteristics, soil types, and dynamic hydrological indicators such as river discharge, runoff, and snow 

water equivalent. By combining these multiple data sources, the FRPM algorithm generates spatially 

resolved flood risk maps, as illustrated in Figure 8, offering a robust foundation for early warning and 

impact assessment. Together, these prototype results illustrate the utility of a coupled meteorological and 

hydrological alert system, supporting real-time flood preparedness and mitigation planning. 
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Fig. 7. NOTHAS severe weather alert with different model configurations. Valid: 19 January 2023, 12 UTC. 

 

Fig. 8. Flood potential risk mapping and impact assessment of Kosovo, based on the WRF-ARW model. Valid: 

00Z18JAN2023 00:00 UTC at 12-hour intervals. 

4.3. Comparative analysis and verification 

To assess the reliability of the flood forecasting system, a comparative analysis was performed between the 

numerical simulations and the European Flood Awareness System (EFAS) platform outputs. The results 

showed strong agreement with the observed precipitation fields (Fig. 9a), providing a solid foundation for 

integrating additional parameters influencing flood dynamics. The ARW nested run at 2 km resolution 
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produced more detailed rainfall patterns, capturing areas of maximum precipitation. Although the EFAS 

flood alert system primarily represents 24-hour observed precipitation, the spatial distribution of rainfall 

was accurately depicted in other simulations, despite some underestimation of total precipitation, 

particularly in the NMM 4-km run. Combined daily GPCP satellite-gauge data for Kosovo and ERA5 

hourly time-series data were used for verification of simulated precipitation and temporal intensities (Fig. 

9b). The EFAS system, particularly for January 19 and 20, 2023 (Fig. 9b), highlighted Skenderaj as a high-

risk area between downstream regions along the White Drin and Ibar Rivers. This zone was identified as 

having a high probability of exceeding the 5-year maximum precipitation threshold, providing valuable 

insights into flood formation and propagation. 

A comparison of the newly developed flood risk system with the EFAS impact assessment revealed a 

strong correlation between the two, particularly for high-risk areas from January 18 to 20, 2023 (Fig. 9c). 

The initial results were promising, demonstrating agreement in flood risk identification. However, further 

model sensitivity studies are necessary to refine geomorphological factor assessments and tests across 

different geographical regions and flash-flood scenarios, enhancing the robustness and predictive accuracy 

of the flood risk system. 

 

Fig. 9a. Observed precipitation (mm). European Flood Awareness System (EFAS). Valid: 19-21 Jan 2023, 00:00 

UTC. 

 

Fig. 9b. Daily GPCP Satellite-Gauge Comb. Precipitation from NOAA. European Flood Awareness System (EFAS). 

Valid: 19-21 Jan 2023, 00:00 UTC. 
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Fig. 9c. ERA5 hourly time-series data on single levels from 18/01/2023 00:00 to 21/01/2023 00:00. European 

Flood Awareness System (EFAS). Valid: 19-21 Jan 2023, 00:00 UTC. 

 

 

Fig. 9d. Flood probability and threshold level exceedance ongoing. European Flood Awareness System (EFAS). 

Valid: 19-21 Jan 2023, 00:00 UTC. 
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Fig. 9e. Rapid impact assessment. Layers show the main catchments and major rivers in the central domain of 

Kosovo. European Flood Awareness System (EFAS). Valid: 19-21 Jan 2023, 00:00 UTC. 

Regarding flood risk probabilities, the EFAS system, particularly for January 19 and 20, 2023 (Fig. 9d), 

indicates that the Skenderaj watershed is positioned between high-risk areas downstream along the White 

Drin River and the lower reaches of the Ibar River. This region exhibits a high probability of exceeding 

the 5-year maximum total precipitation threshold (red), as derived from the combined ensemble model 

outputs. In addition to meteorological factors that contributed to flood initiation, this detail may provide 

further insights into the formation and propagation of flooding in the Skenderaj region. A comparison 

between the newly developed flood risk mapping system, based on ARW and NMM model outputs and a 

diagnostic algorithm that incorporates both meteorological and hydro-geological parameters, reveals a 

strong correlation with the EFAS impact assessment for the same analysis period (Fig. 9e). The initial 

results are highly encouraging, demonstrating a clear agreement in high-risk areas from January 18, 2023, 12 

UTC to January 20, 2023, 00 UTC. 

However, to obtain more reliable results, further model sensitivity studies are necessary, incorporating a 

more detailed assessment of geomorphological factors and testing across different geographical regions 

and flash-flooding case studies. These steps will enhance the robustness and predictive accuracy of the 

flood risk assessment system. 

5. Conclusions 

This study provides a comprehensive assessment of the January 2023 extreme rainfall event in Kosovo, 

with a focus on enhancing early warning capabilities through the integration of meteorological and 

hydrological modeling. High-resolution simulations using the 2-km WRF-ARW model more accurately 

captured the spatial and temporal dynamics of precipitation – particularly over localities such as Skenderaj 

and Istog – compared to coarser simulations, which tended to underestimate peak rainfall intensities and 

their timing. 

The 4-km WRF-NMM model contributed to a broader understanding of precipitation distribution across 

southeastern Europe, but lacked the spatial precision needed for effective flash flood detection at the 

small catchment scale. Differences in model performance were linked to domain resolution, microphysical 

parameterizations, and representation of convective processes. A series of numerical experiments was 

conducted to examine model sensitivity to various configurations, including the model core used (ARW 

vs. NMM), initialization method (nested versus single-domain deterministic runs), scalability of 

atmospheric processes (in terms of spatial and temporal resolution), and the selection of microphysical 

and convective schemes. These experiments helped identify key drivers of simulation accuracy, especially 

in small, flood-prone catchments. 

Hydrological analyses revealed elevated surface runoff, increased soil saturation, and peak river discharge 

across critical areas, reflecting the strong coupling between atmospheric forcing and catchment response. 
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Particularly in the Skenderaj watershed, hydrological indicators suggested heightened flash flood potential, 

even in the absence of major river channels. This emphasizes the importance of refined diagnostic tools 

for flash flood detection in small basins. 

A key contribution of this study is the development of a probabilistic flash flood forecasting methodology 

based on a cumulative distribution function (CDF) that integrates key hydrological variables – such as 

river discharge, runoff, drainage density, terrain slope, and soil moisture – with meteorological output 

from the WRF-ARW model. By calibrating threshold values that represent the combined atmospheric and 

hydrological drivers of flash floods, the framework enables impact-based flood categorization tailored to 

local-scale dynamics, with effectiveness demonstrated in the Skenderaj basin. The incorporation of 

NOTHAS and GIS-based geo-hazard mapping further improved the spatial localization of high-risk 

zones. Comparative validation against EFAS forecasts confirmed the reliability of the simulations, 

demonstrating consistency in both the intensity and spatial extent of the event. 

Unlike traditional flood forecasting methods that often rely on deterministic hydrological modeling or 

river stage thresholds, the proposed CDF-based system offers a more adaptive and probabilistic approach 

that accounts for multiple interacting drivers of flash floods. This approach is particularly valuable for 

data-scarce, small catchments where real-time measurements are limited and forecast uncertainty is high. 

This research introduces a novel approach for coupling meteorological simulations with hydrology-based 

alert algorithms. It highlights the value of integrated risk metrics grounded in hydrometeorological 

principles, particularly for early warning in small and vulnerable catchments. However, further case studies 

and numerical experiments are essential to test robustness across diverse events and hydrological settings 

before this methodology can be considered for operational use by water management and crisis response 

agencies in Kosovo. The findings represent a promising step toward localized, data-driven flood 

forecasting systems, with strong potential for real-time implementation in disaster risk reduction 

frameworks. 
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Abstract 

This article presents the results of an analysis of the long-term variability of average monthly and annual solar radiation in Ukraine 

from 2011 to 2020. The measurement data are compared with earlier periods and the standard period of 1961-1990. The statistical 

characteristics of changes in solar radiation are determined. The characteristics of solar radiation are compared with normative 

data of the National Standard of Ukraine (DSTU-NBV.1.1.-27:2010). In recent years, the annual amounts of direct radiation have 

increased by 18-23%. The total annual radiation in 2020 was 6% greater than in 1961-1990. Hourly and daily direct and scattered 

radiation were analyzed with empirical dependencies and engineering calculations. The efficiency of using the sustainable potential 

of solar energy depends on the climatic characteristics of the specific area or region. Inconsistencies in regulations can therefore 

create a problem where the best places for energy production lack public interest, infrastructure, and cost-effective consumption. 

Depending on the regional climatic conditions of Ukraine, the solar energy potential varies from 1400 MJ/m2 in the western 

regions to 1950 MJ/m2 in the eastern ones. An important characteristic of solar energy resources is the duration of sunshine.  For 

Kyiv, the average monthly duration varies from 180 h in March to 120 h in November. The possible annual duration of sunshine 

varies accordingly from 4452 h (2011) to 4481 h (2020). The maximum values were observed in June (331 h) and August (334 h).  
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Solar radiation, long-term change of total solar radiation, solar energy potential, climatic standard.  
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1. Introduction 

Solar radiation is characterized by high availability, stability, and thus is the least risky renewable energy 

source (RES) from an economic perspective (Mierzwiak et al. 2022; Liu et al. 2023; Kapica et al. 2024). 

Variability and uncertainty are the most difficult parameters to account for when evaluating the solar 

radiation potential. Variability is determined by processes associated with changes in the state of the 

atmosphere and the radiation balance of the Earth's surface. Uncertainty indicates the difficulty of 

forecasting when using various models of behavior of the object under study. There is a limit to the 

maximum production of electricity (heat), which changes over time and is difficult to predict (uncertainty). 

As power generation from RES penetrates further into the global energy system, it is necessary to provide 

accurate forecasts of solar energy potential to avoid the consequences of changing the parameters of the 

energy system and to ensure appropriate control. 
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Rational volume-planning, plasticity, and color scheme of facades make it possible to make maximum use 

of solar radiation to increase the comfort of the indoor environment. Sun protection of insulated facades 

prevents temperature deformation of the surface structure and stabilizes the temperature regime of the 

premises (Ujma 2014; Sadooghi, Kherani 2019). Climatological characteristics are used when performing 

energy calculations and drawing up energy passports and audits, as well as when designing heating and 

ventilation systems. 

The climate of Ukraine has changed significantly in recent years (Lipinskyi et al. 2003; Murtazinova 2009; 

Voloshina, Kuryshina 2010; Rybchenko, Savchuk 2015; Lopushanska, Iwanow 2022). Existing standards 

(DSTU-NBV.1.1.-27:2010) need clarification for the development of engineering and architectural 

solutions for the energy efficiency of buildings. The DSTU-NBV.1.1.-27:2010 introduced climatic zoning 

of the territory of Ukraine. But the climate has changed in the past ten years, requiring that climate data in 

the standard documents be clarified. 

In recent years in Ukraine, the duration of sunlight, as well as direct, scattered, and total solar radiation, 

have changed. However, a significant increase in the duration of sunlight and direct solar radiation in 

combination with a simultaneous decrease in diffuse radiation did not contribute to the growth of total 

radiation (Rybchenko, Savchuk 2013). 

When designing installations that use solar energy, it is necessary to account for the spatio-temporal 

change in the distribution of solar radiation, which depends on astronomical and meteorological factors , 

i.e., the geographical latitude and the height of the sun, as well as the transparency of the atmosphere. 

Weather conditions in Ukraine depend on the large-scale circulation of the atmosphere over the northern 

hemisphere and regional features. The eastern regions of Ukraine are located on the axis of the 

extratropical maximum (Zubkovich 2013). This axis passes through Ukraine from the southwest to the 

northeast. One of the signs of modern climatic changes is a noticeable weakening of wind speed over 

Ukraine, which causes changes in synoptic characteristics. A predominance of significant baric gradients 

was observed over eastern Ukraine. A comparative analysis of the variability of average daily air 

temperature and daily precipitation in the winter season in Kyiv, in relation to the change in global 

temperature in the 20th century, is provided in Murtazinova (2009). That study analyzed data for 1910-

2002, showing an increase in the variability of the average daily temperature in December and a sharp 

decrease in the inter-day variability in January and February. 

Solar radiation varies depending not only on geographical latitude, but also on regional climatic conditions. Thus, 

in Precarpathia and the Ukrainian Carpathians, the solar energy potential (SEP) is 1400-1500 MJ/m2. In the 

summer, in the north of Ukraine, SEP is 1550-1800 MJ/m2, and in the eastern and central regions SEP is 1850-

950 MJ/m2, increasing in the southern regions to 2000-2150 MJ/m2 (Dmytrenko, Barandich 2007). When 

designing solar power plants, comprehensive indicators of the potential of solar energy are required (Dmytrenko, 

Barandich 2007; Rybchenko, Savchuk 2015), which are not measured widely enough in Ukraine. Therefore, it is 

necessary to develop methods for designing engineering systems and developing architectural solutions. 
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Analytical expressions for calculating specific solar heat fluxes for clear sky conditions depending on 

geographic latitude, inclination, time angle, and angle of inclination of the solar collector plane are given in 

Ozarkiv et al. (2007). The values of hourly direct and scattered radiation for the conditions of the city of 

Lviv (50° north latitude) are given. In Halchak et al. (2019), the results of modeling the parameters of the 

direct flow of solar radiation under a clear sky, accounting for the transparency of the atmosphere, are 

indicated. Average monthly values of the hourly change in the intensity of direct solar flux are used in the 

calculations. 

Rybchenko and Savchuk (2015) and Dmytrenko and Barandich (2007) show the results of zoning based 

on a set of indicators of solar energy potential, duration of sunshine, and cloudiness. Average monthly 

values of solar radiation are determined using the NASA SSF database obtained from satellites. At the 

same time, data for the past five-year period are necessary to estimate the potential of solar energy 

(Madesh, Sandhu 2015). The NASA SSF database contains data for the period of 1983-2005. 

Measurements are made at more than 1,000 weather stations in various places around the world. 

Calculations are performed for a grid of 2.5 × 2.5 degrees of the earth's surface, thus the results are less 

accurate than those measured at weather stations. Methods of computer modeling and calculation of solar 

inflows were developed by Sergeychuk (2011) for non-standard solutions of enclosed structures using a 

point calculation device. The formation of the regime of solar heat gain from both direct solar rays and 

diffuse radiation in a building of complex geometry is also considered. 

A large number of relevant computer programs have been created. The Atmospheric Radiation model was 

used to develop the DSTU-NBV.1.1.-27:2010. To use these computer packages, builders and designers 

must be highly qualified. Therefore, calculation engineering methods are being developed for practical 

application. 

Statistical characteristics give an idea of the time structure of the series. The temporal structure of solar 

radiation ranges for Ukrainian cities has been little studied. Statistical characteristics of solar radiation are 

given in Pivovarova (1988). Interannual variability has been studied more than temporal and diurnal 

variability. In Kuznietsov and Lysenko (2017), it is shown that power change as a random process can be 

considered nearly stationary. The mathematical expectation of the magnitude of the jumps (change in 

power) is close to zero, and their distribution has signs of symmetry. The models use ratios recommended 

by the European Solar Radiation Catalog (ESRA). The numerical results are compared with the 

actinometric data of the Boryspil and Kovel stations. Noticeable differences are due to local daily and 

seasonal features of the state of the real atmosphere. Methods by which the energy exposure of the 

surface is estimated according to the parameters of solar flux, the intensity of which is calculated relative 

to the solar constant using approximate empirical estimates of the atmospheric transparency coefficient, 

are given in Mysak et al. (2014).  

The purpose of this study is to analyze the patterns of multi-year distribution of actual solar radiation 

flows from 2011 to 2020, as well as to compare them with data from earlier periods and normative data. 
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2. Materials and methods 

2.1. Study area 

The solar radiation fields of Poland and Ukraine, as illustrated in Figure 1, are the subject of analysis. The 

geographical coordinates of Ukraine span from the westernmost point at 48°25 '09''N, 22°08'14''E to the 

easternmost at 49°15'38''N, 40°13'41''E, the northernmost point at 52°22'45''N, 33°11'21''E, and the 

southernmost at 44°23'14''N, 33°44'17''E. The territory of Poland extends approximately from 49°00'N to 

54°50'N and from 14°07'E to 24°08'E. The analysis focuses on solar radiation data over the period 2011-

2020. 

    

Fig. 1. The study area (Solar Resource Map, Global Solar Atlas-Poland (Solargis)). 

Temporal changes in solar radiation for two Ukrainian cities – Kyiv (50°27' N, 30°31' E) and Odesa 

(46°29' N, 30°43' E). According to DSTU-NBV.1.1.-27:2010, the territory of Ukraine is divided into three 

regions for architectural and construction purposes: Polyssia and Forest Steppe (northwest), Steppe 

(southeast), and the Ukrainian Carpathians. The climatic characteristics of these regions differ 

significantly. The methodology for calculating the average monthly sums of direct and scattered solar 

radiation for different latitudes (44-50°N) and tabular data under conditions of clear sky and medium 

cloudiness are given. When calculating hourly energy illuminance from direct and scattered radiation, 

tabular data are for clear sky conditions. At cloudiness values of 10 points, tabular data are given for 

January and July; at other cloudiness values, data interpolation is required. 

2.2. Data description 

The study is based on observational data of monthly and annual averages of direct, diffuse, reflected, and 

global solar radiation on both horizontal and perpendicular surfaces under clear sky and average 

cloudiness conditions for the period 2011-2020 (a total of 120 months). The dataset contained gaps (April, 

June, and July 2020), which were filled using arithmetic mean values from the corresponding time series. 

Additionally, data on sunshine duration (monthly and annual averages) and the potential annual number of 
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clear days were used. The primary data source was the Borys Sreznevskyi Central Geophysical 

Observatory (Kyiv, Ukraine). Measurement data are presented for two meteorological stations (Table 1). 

Table 1. Details of the meteorological stations. 

Station name Latitude Longitude 
Average annual 

temperature 
Altitude 

Kyiv (Boryspil, airport) 50°27'16.9''N 30°31'25.7''E +9°C 184 m 

Odesa (airport) 46°28'39''N 30°43'57.4''E +11.3°C 57 m 

 

To forecast the time series, its statistical characteristics were determined and compared with the normative 

values provided in the DSTU-NBV.1.1.-27:2010. Observation data from the Boryspil (Kyiv) 

meteorological station were compared with data from other cities  (Katowice and Częstochowa, Poland) 

located at latitudes close to that of Kyiv (approximately 50°N). The main method used to identify trend 

and cyclical components in the time series was statistical, implemented using the STATISTICA software 

package (https://www.statistica.com/en/software/tibco-data-science-/-tibco-statistica). 

2.3. Model performance 

Statistical calculations were performed using the following equations: 

• mathematical expectation: 

𝑀(𝑥) = ∑ 𝑥𝑖
ℎ
1 𝑝𝑖 (1) 

• 1st quartile Q1, 2nd quartile (median) Q2, 3rd quartile Q3: 

𝑄1 = 𝑥1 + ℎ𝑖

1

4
𝑛−∑ 𝑓𝑖𝑖

𝑓𝑖
; …  𝑄2 =

ℎ+1

2
; … 𝑄3 = 𝑥𝑖 + ℎ𝑖

3

4
𝑛−∑ 𝑓𝑖𝑖

𝑓𝑖
 (2) 

• 2nd central moment (dispersion): 

𝐷 =
1

𝑛
∑ 𝑓𝑖(𝑥𝑖 − 𝑥̅)2

𝑖  (3) 

• mode: 

𝑀0 = 𝑥𝑖−1 + ℎ𝑀0

𝑓𝑖 −𝑓𝑖−1

(𝑓𝑖−𝑓𝑖−1)+(𝑓𝑖 −𝑓𝑖+1)
 (4) 

• coefficient asymmetry: 

𝐴𝑠 =
𝑀3

𝐺3
 (5) 

• kurtosis coefficient: 
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𝐴𝐾 =
𝑀4

𝐺4
− 3 (6) 

The calculations were made using the R 4.03 software for statistical data analysis (https://www.r-

project.org/), free software with wide capability for various methods of data processing (Dalgaard 2008). 

The monthly data were used to calculate hourly values of solar radiation according to the following 

methodology:  

Incoming total solar radiation during the day is determined by the relation (Kalogirou 2014): 

𝐻0 =
3600ℎ𝑠𝐺𝑠𝑐

𝜋
[1 + 0.33

360𝑁

365
] × (𝑐𝑜𝑠𝐿 ∙ 𝑐𝑜𝑠𝛿 ∙ 𝑠𝑖𝑛ℎ𝑠𝑠 + (

𝜋ℎ𝑠𝑠

180
)𝑠𝑖𝑛𝐿 ∙ 𝑠𝑖𝑛𝛿) (7) 

where: Gscis the solar constant; Gsc = 1330 W/m2; N is the day of the year; L is the geographical latitude; 

δ is the declination of the sun; hss is the height of the sun; hs is the length of the solar day. 

ℎ𝑠 =
2

15
𝑐𝑜𝑠−1[−𝑡𝑎𝑛𝐿 ∙ 𝑡𝑎𝑛𝛿]𝑐𝑜𝑠−1[−𝑡𝑎𝑛𝐿 ∙ 𝑡𝑎𝑛𝛿] 

𝛿 = 23.45 ∙ 𝑠𝑖𝑛 [
360

365
(𝑁 + 284)] 

ℎ𝑠𝑠 = 𝑐𝑜𝑠−1[−𝑡𝑎𝑛𝐿 ∙ 𝑡𝑎𝑛𝛿] 

The temporal arrivals of solar radiation are determined by the relation (Collares-Perera, Rabl 1979): 

𝑟 =
𝑖

𝐻0
=

𝜋

24
[𝛼 + 𝛽𝑐𝑜𝑠ℎ] ∙

(𝑐𝑜𝑠ℎ−𝑐𝑜𝑠ℎ𝑠𝑠)

𝑠𝑖𝑛ℎ𝑠𝑠−
2𝜋ℎ𝑠𝑠

360
𝑐𝑜𝑠ℎ𝑠𝑠

 (8) 

where: α = 0.409 + 0.5016sin(hss – 60); β = 0.6609 – 0.4767sin(hss – 60). 

3. Main results and their discussion 

Figure 2 shows the long-term change in total solar radiation for the conditions of Kyiv (Boryspil station) 

(Fig. 2a) and Odesa (Fig. 2b). 

 

Fig. 2a. Solar radiation on a perpendicular surface (I) by month from January 2011 to December 2020. 
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Fig. 2b. Solar radiation on a perpendicular surface (I) by month from January 2011 to December 2020. 

Table 2 shows data from the State Standard of Ukraine 2010 for Kyiv, compared with data from other 

weather stations located near 50°N. 

Table 2. Total solar radiation according to data from weather stations close to 50°N by month (horizontal surface, 

average cloudiness). 

Weather 
station/The 

source, 
period 

I II III IV V VI VII VIII IX X XI XII 

Boryspil, 
Kyiv, [1], 

50027′N, 
30031′E 

(1961-1980), 
Δ1, % 

The amount 
of 

radiation/the 
percentage 

of deviation 
of this value 

from the 
standard 
value, 

2

MJ

m

/% 

107/25 161/13 304/12 405/10 604/7 650/10 649/10 517/4 384/13 220/16 89/10 66/12 

Boryspil, 

Kyiv, (1961-
1980). State 

Standards, 
Δ2, % 

96/13 141/0 266/2 417/8 591/5 622/5 611/4 511/3 362/7 210/10 81/1 55/7 

Boryspil, 
Central 

Geophysical 
Observatory 

(2011-2020), 
Δ3, % 

82/3 149/5 300/11 449/17 587/4 660/12 605/3 600/21 417/23 226/19 81/0 61/3 

Boryspil, 

(1961-2005), 
State 

Standard 
2010 

85 142 270 385 565 590 588 495 338 190 81 59 

Kharkiv, 

49058′N, 
36015′E, 

State 
Standard 

77 149 281 401 578 606 609 526 364 202 84 59 
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Weather 
station/The 

source, 
period 

I II III IV V VI VII VIII IX X XI XII 

Częstochowa 
[PN ISO] 

50049′N, 
19006′E 

(1971-1991) 

85 135 239 396 526 491 562 436 309 199 105 81 

Katowice 

[PN ISO] 
50014′N, 

19002′E 
(1971-1991) 

95 127 233 373 570 511 577 454 337 200 109 85 

Note: Δ1, Δ2, Δ3 are deviations from DSTU-NBV.1.1.-27:2010. 

The data of Standard 2010 differ by 21-23% from the data measured from 2011 to 2020. When the 

longitude changes from 19° to 36°E, the values of solar radiation differ slightly (Table 3), while under the 

influence of regional conditions (e.g., in Katowice, under the influence of mountain conditions, or in 

Kharkiv, influenced by steppe conditions), they can differ significantly. Temporal differences in 

measurements were observed over the period of 1961 to 2020. Thus, in the last decade, in the summer 

months, there was an increase in the values of total solar radiation up to 700-900 MJ/m2. 

Using the values of actinometric measurements from 2011 to 2020, the average monthly values were 

calculated, along with standard deviation, coefficient of variation, asymmetry coefficient, kurtosis 

coefficient, and amplitude (Table 3). 

Table 3. Statistical characteristics of average monthly amounts of total solar radiation for the period of 2011-2022. 

Station, 

characteristics 

Months of the year 

I II III IV V VI VII VIII IX X XI XII 

Arithmetic average, 
MJ/m2 

Weather station in BORYSPIL, Kyiv 

80.00 129.6 263.00 415.00 528.70 640.56 569.44 587.11 440.90 247.00 71.00 54.3 

Standard deviation, 

MJ/m2 
29.23 40.34 69.47 84.55 127.29 103.61 114.69 101.42 180.51 112.34 37.87 28.3 

The coefficient of 

variation 
0.365 0.311 0.264 0.203 0.240 0.161 0.201 0.172 0.409 0.454 0.533 0.52 

Asymmetry 
coefficient 

0.37 0.96 –0.09 –0.54 –0.35 0.73 –0.76 –0.35 0.18 0.26 0.91 –0.2 

Kurtosis coefficient –0.98 0.62 –1.29 –1.38 –1.28 –1.06 –0.45 –0.56 0.09 –1.39 –0.28 –1.7 

Amplitude 

(max/min) MJ/m2 
97/58 197/109 318/225 502/339 662/501 759/516 703/473 919/514 740/203 354/125 113/56 85/41 

Arithmetic average 

MJ/m2 

ODESA weather station 

108.7 153.9 341.6 502.4 617.2 676.2 722.9 739.6 531.6 293.1 111.4 116 

Standard deviation, 

MJ/m2 
38.94 63.64 84.66 106.79 131.08 90.5 86.92 101.35 105.15 96.19 43.04 65.7 

The coefficient of 

variation, % 
0.358 0.413 0.247 0.212 0.212 0.133 0.120 0.137 0.197 0.328 0.386 0.56 

Asymmetry 

coefficient 
0.68 0.72 0.33 0.64 –0.19 0.14 –0.01 0.29 –1.04 0.38 0.6 0.12 

Kurtosis coefficient –0.57 –0.04 –0.54 –0.2 –1.05 –1.46 –1.66 –1.62 –0.07 –1.05 –1.21 –0.9 

Amplitude 
(max/min) MJ/m2 

123/74 209/127 417/255 673/444 760/516 789/640 772/638 730/595 491/363 326/203 161/80 133/44 
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Figure 3 shows the annual course of the standard deviation for the conditions of the meteorological 

stations in Kyiv and Odesa. There is a seasonal change in the amount of total solar radiation. At the same 

time, in the northern regions of Ukraine, the changes are 100-180 MJ/m2. The variability of solar radiation 

is shown in Figure 4. 

 

Fig. 3. Annual course of the standard deviations. 

 
Fig. 4. Annual course of the coefficient of variation. 

The change in the relative standard deviation is more significant in the autumn-winter months, reaching 

30-34%. This ratio is typical for both northern and southern regions of the country. For Kyiv, the 

coefficient of variation is 20-34% and the amplitude is 919/514 MJ/m2. For Odesa, they are 12-30% and 

789/640 MJ/m2, respectively. 

The change in the asymmetry coefficient is shown in Figure 5. 
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Fig. 5. Annual course of the asymmetry coefficient. 

For Odesa, values fluctuate from –1.1 to 0.75. For the northern territories, a period with negative 

asymmetry is observed from March to May. From August to December, the asymmetry is positive and 

reaches maximum values of (–1), 1. 

Figure 6 shows the values of the kurtosis coefficient. 

 

Fig. 6. Annual course of the kurtosis coefficient. 

In the distribution of total solar radiation, there is a negative kurtosis  (E) during the year for the southern 

regions of Ukraine, with a maximum E of – 1.75. For Kyiv, from March to November, kurtosis is 

negative with maximum values of 1.4-1.75. In February, kurtosis is positive (E = 0.6), indicating sharp 

peaks in the distribution curves. 

Figure 7 shows a comparison of average monthly and average daily values for the Central Geophysical 

Observatory and the State Standard of Ukraine. An increase in radiation has been observed during the last 

decade. 
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Fig. 7. Average monthly and average daily values of solar radiation. ─o─ State standard of Ukraine; ─x─ Central 

Geophysical Observatory ; ─Δ─ day. 

Table 4 compares data from the State Standard of Ukraine with climatic data from different periods. The 

data of the State Standard of Ukraine (8-11%) coincides with the data from the early periods. 

Table 4. Comparison of total solar radiation according to DSTU-NBV.1.1.-27:2010 with climatic data of different 

periods (for Odesa conditions with medium cloudiness). 

Months [12] Δ [%] 
Сentral Geophysical 

Observatory 
Δ [%] [10] 

I 101 –11 101 –4 114 

II 157 –2 164 +2 160 

III 214 –4 345 +13 306 

IV 454 –2 515 +11 465 

V 627 0 648 +3 631 

VI 667 –4 692 0 698 

VII 690 –3 709 0 712 

VIII 608 –2 653 +5 623 

IX 431 –5 458 0 452 

X 261 –7 257 –9 282 

XI 109 –8 113 –4 118 

XII 75 –16 89 0 89 

An increase in average monthly values has been observed in recent years. Average daily values in every 

month of the year are shown in Figure 7. Using calculation dependencies, average daily values for any day 

of the year can be determined. Using these daily averages, hourly values can be determined.  

Knowing the radiation input data, the average monthly and hourly values  can be determined: Collares-

Perera and Rabl (1979), Page et al. (2001), Zekai (2008), Duffie and Beckman (2013), Walker (2013), 

Kalogirou (2014), Mysak et al. (2014).  

For Kyiv at noon on July 15, we determine: 
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𝑟 =
𝜋

24
[0.8344 + 0.2566 ∙ 𝑐𝑜𝑠(−7.5°)] ×

(𝑐𝑜𝑠(−7,5°) − 𝑐𝑜𝑠118°)

𝑠𝑖𝑛118° − (
2𝜋 ∙ 118°

360
) 𝑐𝑜𝑠118°

= 0.112. 

The incidence of total solar radiation at noon on July 15 for Kyiv is: 

𝑖 = 𝑟 ∙ 𝐻0 = 0.112 ∙ 7078 = 𝑊/𝑚2 W/m2 according to the Standard of Ukraine (862 W/m2). 

For example, for Kyiv (L = 50 L), the daily incidence of radiation on July 15 is: 

𝛿 = 23.45𝑠𝑖𝑛 [
360

365
(𝑁 + 284)] = 23.45𝑠𝑖𝑛 [

360

365
(106 + 284)] = 21.2° 

ℎ𝑠𝑠 = 𝑐𝑜𝑠−1[−𝑡𝑎𝑛(50°) ∙ 𝑡𝑎𝑛(21.2°)] = 118° 

ℎ𝑠 =
2

15
𝑐𝑜𝑠−1[−𝑡𝑎𝑛(50°) ∙ 𝑡𝑎𝑛(21.2°)] = 15.7 ℎ𝑜𝑢𝑟𝑠 

𝐻0 =
3600 ∙ 15.7 ∙ 1300

𝜋
[1 + 0.33

360 ∙ 196

365
] × (𝑐𝑜𝑠50° ∙ 𝑐𝑜𝑠21.2° ∙ 𝑠𝑖𝑛118° + (

𝜋 ∙ 118

180
) 𝑠𝑖𝑛50° ∙ 𝑠𝑖𝑛21 .2°)

= 25,48𝑀𝐽 /(𝑚2 ∙ 𝑑𝑎𝑦)  

or (= 7078𝑊 ∙ ℎ/(𝑚2 ∙ 𝑑𝑎𝑦)). 

According to the Standard 2010 data, the total daily solar radiation on June 15 for Kyiv under a clear sky is 

Q = 7544 W·h/(m²·day) (Δ = 6%). 

An important characteristic of solar energy resources is the duration of sunshine. According to data from 

Dmytrenko and Barandich (2007), effective use of solar energy is ensured when the duration of sunshine 

(average monthly values) is >200 h. According to the data from the Boris Sreznevskyi Central 

Geophysical Observatory, the actual annual duration of sunshine for 2011-2020 at Kyiv (Boryspil) varies 

from 2222 hours (2011) to 2184 hours (2020). The possible annual duration of sunshine varies from 4452 

hours (2011) to 4481 hours (2020), respectively. The average monthly value of the actual duration of 

sunshine varies from 203 hours (March 2011) to 135 hours (November 2011). The maximum values are 

302 hours in May and 305 hours in June. In 2020, the actual monthly average values vary from 180 hours 

in March to 120 hours in November. Maximum values are observed in June (331 hours) and August (334 

hours). In the southern regions of Ukraine, the actual annual duration of sunshine for 2011-2020 at Odesa 

varies from 2387 hours (2011) to 2709 hours (2020). The possible duration of sunshine varies from 4717 

hours (2011) to 4242 hours (2020), respectively. Average monthly values of the actual duration of 

sunshine vary from 180 hours (March 2011) to 169 hours (November 2011). The maximum values are 

observed in July (333 hours in 2011) and August (371 hours in 2011). In 2020, the actual monthly average 

values ranged from 217 hours (March 2020) to 168 hours (November 2020), respectively. The maximum 

values were observed in July (379 hours in 2020) and August (380 hours in 2020). 
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The criterion for the expediency of using solar energy is that the annual number of clear and semi-clear 

days is >200 (with >244 days, the potential is assessed as high). The State Standard of Ukraine does not 

specify the number of clear days. 

4. Conclusions 

The results of analyzing the multi-year series of solar radiation for 2011-2020 indicate an increase in the 

average monthly and annual solar radiation in both the southern and northern regions of the country in 

the last years of the decade. Comparing data from the DSTU-NBV.1.1.-27:2010 with actual measurement 

data, the data from the state standard of Ukraine differ from the data of the last decade by 18-23% and 

require clarification. To determine daily and hourly solar radiation, empirical dependences are presented 

that are simple and convenient for use in engineering calculations and assessments of solar energy 

resources. 
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Trends and prediction of  extreme precipitation indices in three cities of  Burkina 

Faso using non-parametric statistics and the Holt-Winters smoothing method 
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Abstract 

Climate extremes have become increasingly important in recent years, leading to renewed scientific interest. However, few studies 

have focused on precipitation extremes in cities in Burkina Faso, a Sahelian country in West Africa. The aim of  this study is to 

analyze trends and to project future extreme precipitation indices in three cities in Burkina Faso. To this end, precipitation data, 

recorded daily, were collected from the National Meteorological Agency of  Burkina Faso (NMABF) over the period 1991-2020. 

The stations selected were Boromo for the small town of  Boromo, Saria for the medium-sized town of  Koudougou, and Bobo-

Dioulasso for the town of  Bobo-Dioulasso. The precipitation data were used to calculate the extreme precipitation indices 

described by ETCCDMI (Expert Team for Climate Change Detection Monitoring and Indices) using Rclimdex. Descriptive 

statistics, the Mann-Kendall test, and trends from innovative models were used to analyze the extreme precipitation indices; the 

Holt-Winters additive model was used to analyze future projections. The study showed considerable variability and a monotonic 

increasing trend in extreme precipitation indices over the period 1991-2020. However, for the city of  Koudougou, the trend was a 

non-monotonic increase. The forecast based on the Holt-Winters additive model shows considerable variability in the extreme 

precipitation indices, with an upward trend over the period 2020-2030. On the other hand, in the city of  Koudougou, indices of  

precipitation duration will decrease, indicating that the city will be affected most by the frequency and intensity of  extreme 

precipitation. 
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1. Introduction 

Fluctuations in temperature and precipitation are widely recognized as relevant indicators of  global 

climate change and variability (IPCC 2021). Anthropogenic activities that increase greenhouse gases cause 

temperature increases and regional changes in mean climate, resulting in climate extremes in various parts 

of  the world (IPCC 2023). In West Africa, several studies, including in Nigeria (Gbode et al. 2019), 

Mauritania, Guinea, Côte d'Ivoire, Senegal, Mali, and Niger (Barry et al. 2018), have observed these 

changes. Sylla et al. (2015) add that the increase in the intensity of  very wet events, particularly in the pre- 

and early monsoonal periods, will be more marked over the Sahel and under Representative Concentration 

Pathway (RCP) 8.5 than in the Gulf  of  Guinea under RCP 4.5. Urban areas will also be affected by 

climate extremes in West Africa (Herslund et al. 2015), which is a major concern. 

African cities are experiencing an unprecedented increase in the rate of  urbanization. Between 1990 and 

2022, 500 million people are expected to move to urban centers in Africa (OECD 2022). By 2050, Africa's 

urban population is expected to reach 1.06 billion (Ezeh et al. 2020). This demographic growth will 

increase the impact of  climate extremes on urban populations. Extreme precipitation caused flooding in 

Dar es Salaam on 22 December 2011, resulting in 20 deaths, extensive damage, and loss of  livelihoods 
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(Giugni et al. 2015). The same happened in Lagos, Nigeria (Doan et al. 2023) and Dakar, Senegal (Diémé 

et al. 2025). In Burkina Faso, the situation is no better than in other West African countries. The country is 

experiencing an increase in precipitation and extreme temperature indices in the north, Boucle du 

Mouhoun, and southwest regions (Rouamba et al. 2023; Yaméogo, Rouamba 2023a; Yanogo, Yaméogo 

2023; Yaméogo 2024; Yaméogo, Sawadogo 2024; Yaméogo 2025), with dramatic consequences for the 

population (Yaméogo, Rouamba 2023b). In this context, (Gimeno et al. 2022) note that the increase in 

urban populations associated with climate change makes societies increasingly vulnerable to extreme 

precipitation.  

A few studies have examined extreme precipitation trends and projections. For example, the work of  

Rouamba et al. (2023) in the municipality of  Boromo, in the south of  Burkina Faso (Sougué et al. 2023), 

and in ten cities in Burkina Faso addressed the issue of  trends and forecasts of  climatic extremes in recent 

years. Several statistical methods, especially approaches based on the classical theory of  extremes (peak-

on-threshold) and linear regression models, have been used by various authors to understand the 

spatiotemporal trends in climate extremes (Béwentaoré, Barro 2022; Rouamba et al. 2023). Parametric 

regression models have also been used to predict future extreme events using CMIP6 data (Koala et al. 

2023). These studies do not account for trends and seasonality of  the time series of  climate extremes, 

which can bias trends and forecasts of  precipitation extremes.  

Several other advanced forecasting methods are reported in the literature, including the Holt-Winters 

smoothing method, which accounts for trend and seasonality (Nurhamidah et al. 2020). This method has 

advantages, such as reducing the weight of  historical data, and simplicity. Therefore, it has been used in 

several studies in the field of  climatology (Gundalia, Dholakia 2012; Gowri et al. 2022; Bhagat, 

Ramaswamy 2023). This prediction method can make valuable contributions to understanding future 

trends and impacts of  climate change (Pala, Şevgin 2024). The method thus forms the basis of  statistical 

modeling for climate prediction in the region. The general objective of  this study is to analyze the 

evolution of  extreme precipitation indices and their projection from 2020 to 2030 using non-parametric 

smoothing and Holt-Winters methods in three cities in Burkina Faso. The secondary objectives of  this 

study are to: 

• analyze the variability of  extreme precipitation indices over the period 1991-2020; 

• analyze the trends in extreme precipitation indices over the period 1991-2020; 

• determine the projection of  extreme precipitation indices for the period 2020-2030. 

2. Materials and methods 

2.1. Study area 

The study areas are in Burkina Faso, West Africa (Fig. 1). Three cities are considered in the study: Bobo-

Dioulasso, in the urban commune of  the Houet province in the Hauts Bassins region. These cities vary in 

physical characteristics. The soils of  Koudougou, Burkina Faso, are varied. They include leached tropical 

ferruginous soils, often poor in organic matter and nutrients, and lithosols on cuirass, better suited to 
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grazing. Hydromorphic soils are also found along watercourses, which are favorable to certain crops. The 

area is affected by soil degradation, with a widening of  the Sahel and a decline in vegetation. The soils in 

Boromo, Burkina Faso, are diverse and include cuirass, hydromorphic, and tropical ferruginous soils. 

These soils have various properties influenced by their origin and environment. Some are suitable for 

agriculture, while others are susceptible to erosion. The soils of  Bobo-Dioulasso, Burkina Faso, are mainly 

characterized by ferralitic soils, tropical ferruginous soils , and eutrophic brown soils. These soils result 

from weathering of  Birrimian rocks and vary according to relief  and topography. In human terms, the 

study towns have different populations.  Bobo-Dioulasso is the second-largest city in Burkina Faso, 

covering an area of  1,805 km2. Its population is >900,000. Koudougou is a medium-sized town, Burkina 

Faso's third-largest city. Its population has been particularly dynamic in recent decades. Its urban 

population has more than quadrupled over the past few decades, from 36,838 in 1975 to 88,184 in 2006 

and 160,239 in 2019 (Sirven 1987; INSD 2011). Boromo is one of  the country's smaller towns. Its urban 

population is estimated at 20,193 (INSD 2011). Unlike other towns, Boromo is facing an influx of  people 

fleeing terrorism in the north of  the country. This situation makes the small town of  Boromo vulnerable 

and exacerbates social problems (Yaméogo et al. 2022). 

These three towns were selected based on three criteria: the availability of  rainfall data over a given period, 

the degree of  missing data over a given period, and the size of  the population potentially affected by 

extreme rainfall. The populations of  these towns have increased considerably as a result of  the security 

crisis in the northern, eastern, and Boucle du Mouhoun areas. 

The topography varies throughout the region. The towns studied have altitudes ranging from 232 to 314 

to >478 m (Fig. 2). 

 

Fig. 1. Geographical location of  study towns and stations. 
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Fig. 2. The topography of  Burkina Faso. 

2.2. Data and methods 

Daily precipitation data were obtained from the National Meteorological Agency of  Burkina Faso for 

1991-2020 (Table 1). One station was selected for each of  the three towns. The Saria station represents 

the town of  Koudougou, the Boromo station the city of  Boromo, and the Bobo-Dioulasso station the city 

of  Bobo-Dioulasso. 

Table 1. Characteristics of  the selected stations 

Station names Type of  station selected Type of  domain climate 
Period 
selected 

Latitude 
(N) 

Longitude 
(E) 

Bobo-Dioulasso Synoptic station Sudanian 1991-2020 11.1667 –4.3167 

Boromo Synoptic station Sudano-sahelian 1991-2020 11.75 –2.9333 

Saria Climatological station Sudano-sahelian 1991-2018 12.2667 –2.15 

Daily precipitation data were fed into Rclimdex, which produced extreme precipitation indices for the 

period 1991-2020, representing precipitation intensity, precipitation frequency, and precipitation duration. 

RClimDex provides a user-friendly graphical interface for calculating the 27 basic indices recommended 

by the CCl/CLIVAR Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI) 

(Karl et al. 1999; Zhang, Yang 2004). In the present study, 10 indices were selected (Table 2).  
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Table 2. Extreme precipitation indices used in the study. Source: Lourdes et al. (2021). 

Index classification Index Description  Unit 

Intensity indices 

precipitation 

Rx1day Maximum precipitation over 1 day mm 

Rx5day Maximum consecutive precipitation over 5 days mm 

SDII Annual total precipitation divided by the number of  wet day mm/day 

prpcptot Total precipitation in wet days ≥ 1 mm mm 

Frequency indices 
precipitation 

R99ptot Number of  days with precipitation ≥ 99th percentile day 

R95ptot Number of  days with precipitation ≥ 95th percentile day 

R10mm Number of  days precipitation ≥ 10 mm day 

R20mm Number of  days precipitation ≥ 20 mm day 

Duration indices 
precipitation 

CDD Maximum number of  consecutive days with precipitation < 1 mm day 

CWD Maximum number of  consecutive days with precipitation ≥ 1 mm day 

The data projections for the 10-year period (2020-2030) were based on the extreme precipitation indices 

extracted from the daily data using Rclimdex. The temporal data for the extreme precipitation indices were 

processed in XLSTAT 2019 using the Holt-Winters method. 

2.2.1. Mann-Kendall Test 

It is a non-parametric test and there is no requirement that the data must be normally distributed (Oufrigh 

et al. 2023). In this test, H0 is the null hypothesis, which states that the data come from a population 

whose observations are independent of  each other and are uniformly distributed , and the alternative to 

H1, which states that the data have a monotone tendency (Aditya et al. 2021). These test values (Xj – Xk) 

where j > k and the test statistic S is calculated by applying the formula (Shah, Kiran 2021): 

𝑆 =∑ ∑ 𝑠𝑔𝑛(𝑋𝑗−𝑋𝑘)
𝑛

𝑗=𝑘+1

𝑛−1

𝑘=1
 (1) 

With, Xj and Xk are the annual values for years j and k, j > k, respectively. 

The sgn function is calculated as follows: 

𝑠𝑔𝑛(𝑋𝑗−𝑋𝑘) = {

1 𝑖𝑓 𝑋𝑗 − 𝑋𝑘 > 0 
0 𝑖𝑓 𝑋𝑗 − 𝑋𝑘 = 0

−1 𝑖𝑓 𝑋𝑗− 𝑋𝑘 < 0
} (2) 

The test statistic, τ, can be calculated as follows: 

𝜏 =
𝑠

𝑛 −
(𝑛 − 1)
𝑧

  
(3) 

In order to statistically quantify the significance of  the trend, it is necessary to calculate the probability 

associated with S and the sample size n. The formula to calculate the variance S is as follows: 
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𝑉𝑎𝑟(𝑆) =
1

18
[𝑛(𝑛− 1)(2𝑛 + 5)−∑(𝑡𝑖 −1)(2𝑡𝑖 +5)

𝑚

𝑖=1

] (4) 

Where q is defined as the number of  linked groups and tp is defined as the number of  data items in the 

pth group. The values of  S and Var(S) are used for the calculation of  the test statistic Z, which is: 

𝑍 =

{
 
 

 
 

𝑠 − 1

√𝑉𝑎𝑟(𝑠)
,         𝑖𝑓 𝑠 > 0

0                      𝑖𝑓 𝑠 = 0  
𝑠 + 1

√𝑉𝑎𝑟(𝑠)
,           𝑖𝑓 𝑠 < 0       

}
 
 

 
 

 (5) 

The null hypothesis h0 (no trend) is rejected if  the significance level or p-value is >5%. 

2.2.2. Innovative trend analysis method (ITAM) 

This technique, introduced by Şen (2017), or referred to as new trend analysis (Sezen, Partal 2020), is non-

parametric and its use does not require a normal distribution of  observations (Şen et al. 2019; Mallick et 

al. 2021). It is a very useful tool for detecting trends in precipitation time series data (Pastagia, Mehta 2022; 

Patel, Mehta 2023). In addition, the ITAM is more sensitive in determining the trend than the Mann-

Kendall (MK) test (Mohorji et al. 2017; Sanusi, Abdy 2021; Kessabi et al. 2024). In ITAM, the data series 

is divided into two equal parts such that (Dabanlı et al. 2016; Mohorji et al. 2017; Şen et al. 2019; Marak et 

al. 2020; Kougbeagbede 2024; Muthiah et al. 2024). 

Mathematically, the procedure of  the method is translated as follows (Güçlü 2020): 

• Any data consisting of n data, a1, a2, ..., an is separated into two equal series {b1, n/2} and {b2, n/2}, such as: 

{b1, n/2} = {a1, a2, ..., an/2} (6) 

and 

{b2, n/2} = {an/2+1 + an/2+2, ..., an} (7) 

• Each series with the same number of  elements is then listed in ascending order. The series is named as 

follows: {S1}, et {S2}, with: 

{S1} = {min(b1, n/2), …, b j, …, max(b1, n/2)} (1≺i≺n/2) (8) 

and 

{S2} = {min(b2, n/2), …, b j, …, max(b2, n/2)} (1≺i≺n/2) (9) 

The {S1} data on the horizontal axis are plotted against the values of  the following series: 1, 2, 3, ..., (n/2) 

-1, n/2. 
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The data for {S2} are on the vertical axis according to the values: 1, 2, 3, ..., (n/2) -1, n/2. 

According to Mandal et al. (2021), each series is then sorted independently in ascending order. The first 

half  of  the series (Xi) is plotted on the X axis and the second half  of  the series (Yi) is plotted on the Y 

axis. The presence of  a trend is indicated by a 1:1 (45°) line in the scatterplot. The presence of  a trend is 

indicated by a 1:1 (45°) line in the scatterplot. Coordinates on the 45° line indicate no trend, below it a 

negative trend, and above it an upward trend (Dabanli et al. 2016; Almazroui et al. 2019; Chowdari et al. 

2023; Yaméogo 2025). A detailed interpretation of  the ITAM is given in Figure 3 below, based on data 

from the present study at the Bobo-Dioulasso station. 

 

Fig. 3. Different interpretations of  ITAM's results. 

2.2.3. Slope (S) of  ITAM 

The slope trend S is calculated using the following expression (Şen 2017): 

𝑆 =
2 ∗ (𝑌̅2− 𝑌̅1)

𝑛
 (10) 

Where, 𝑌̅1 and 𝑌̅2 are the arithmetic means of  the first series and the second half  of  the series of  the 

dependent variable, and n is the number of  data points. 

2.2.3. The Percentage Bias Method (PBM) 

The percentage bias method was used to estimate the percentage change in precipitation in the second 

half  of  the time series compared with the first half  (Mandal et al. 2021): 

𝑃𝑀𝐵 = 100−∑
𝑌𝑖
𝑋𝑖

𝑛

𝑖=1

× 100 (11) 
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Where PBM is the percentage bias, n is the total extent of  the sub-series separately, Xi and Yi are the 

values of  the observation data in the first and second sub-series, respectively. Positive and negative PBM 

values indicate increasing and decreasing trends, respectively, for the first sub-series. 

2.2.4. Holt-Winters exponential smoothing model 

The Holt-Winters method, which allows the seasonal model to adapt over time, is one of  the best-known 

forecasting techniques (Lawton 1998). It involves estimating three smoothing parameters associated with 

level, trend, and seasonal variables (Atoyebi et al. 2023). Designed for trend and seasonal time series, the 

Holt-Winters method is a commonly used tool for forecasting trade data containing seasonality, changing 

trends, and seasonal correlation (Gelper et al. 2010). Several studies (Irwan et al. 2023) have also used this 

method to forecast hydro-climatological data series. The Holt-Winters approaches are modeled in one of  

two ways: additive or multiplicative (Koehler et al. 2001; Thomasson 2017; Natayu et al. 2022). 

2.2.5. Holt-Winters seasonal additive model 

The Holt-Winters additive method, which has a linear trend and constant seasonal variation (additive), has 

a prediction composed of  the level (Lt), trend (bt), and seasonal variation (st) (Puah et al. 2016). The 

additive model incorporates seasonality but with the addition of  a trend as follows (Pertiwi 2020; Wiguna 

et al. 2023): 

• Level: 

𝐿𝑡 = 𝛼(𝑌𝑡− 𝑠𝑡−𝑐)+ (1 − 𝛼)(𝐿𝑡−1 −𝑏𝑡−1) (12) 

• Trend: 

𝑏𝑡 = 𝛽(𝐿𝑡 −𝐿𝑡−1) +  (1 − 𝛽)𝑏𝑡−1 (13) 

• Seasonal: 

𝑠𝑡 = 𝛾(𝑌𝑡−𝐿𝑡)+ (1− 𝛾)𝑠𝑡−𝑐 (14) 

The prediction for period Ft+m is: 

𝐹𝑡+𝑚 = 𝐿𝑡 +𝑏𝑡𝑚+ 𝑠𝑡−𝑠+𝑚 (15) 

The smoothing parameters, α, β, and γ have values that vary between 0 and 1. In this study, the 

parameters are fixed at 0.2. This means that the prediction is flexible, i.e. strongly influenced by the most 

recent observations. 

2.2.6. Multiplicative Holt-Winters method (MHW) 

The multiplicative model is used if the data show variable seasonal fluctuations , and the different 

equations are as follows (Pleños 2022; Irwan et al. 2023; Wiguna et al. 2023): 

• Level: 

𝐿𝑡 = 𝛼
𝑌𝑡

𝑆𝑡−𝑠
+ (1 − 𝛼)(𝐿𝑡−1 +𝑏𝑡−1) (16) 
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• Trend: 

𝑏𝑡 = 𝛽(𝐿𝑡−𝐿𝑡−1) + (1− 𝛽)𝑏𝑡−1 (17) 

• Seasonal: 

𝑆𝑡 = 𝛾
𝑌𝑡

𝐿𝑡
+ (1 − 𝛾)𝑆𝑡−𝑠 (18) 

The prediction period t is : 

𝑆𝑡 = 𝐹𝑡+𝑚 = (𝐿𝑡 +𝑏𝑡𝑚)𝑆𝑡−𝑠+𝑚 (19) 

The smoothing parameters, α, β, and γ have values that vary between 0 and 1. In this study, the 

parameters are fixed at 0.2. This means that the prediction is flexible. 

Where, Yt – level in the 2nd period t; Lt-α – level in the 2nd period t-1; bt – trend in the 2nd period t; bt-1 – 

trend in the 2nd period t-1; St – seasonality in the 2nd factors; Yt – data in the 2nd period t; s – seasonal 

period; t – seasonal period; m – predictive time period. 

2.2.7. Analysis of  the Holt-Winters model performance 

Goodness of  fit is a critical criterion for assessing the accuracy of  a predicted model relative to the true 

value (Atoyebi et al. 2023). Mean error (ME), MSE (mean squared error), RMSE (root mean squared error) 

and MAPE (mean absolute percentage error), mean absolute deviation (MAD), and mean squared 

deviation (MSD) have typically been used to examine model performance (Pinel 2020; Atoyebi et al. 2023). 

Other valuation parameters are also considered, such as the mean square error (MSE), the root mean 

square error (RMSE), and the mean absolute error (MAE). However, the use of  MAD and MSD as 

indicators of  prediction accuracy can be problematic in that they do not facilitate comparisons between 

different time series or time intervals, and the absolute measures MAD and MSD are affected by the size 

of  the time series data (Atoyebi et al. 2023). The statistics MAD and MSE, provide no guidance on 

whether the model is good or not. This makes it impossible to use both measures (Gundalia, Dholakia 

2012). Therefore, MAPE is used in studies as a valid indicator of  model performance (Gundalia, Dholakia 

2012; Puah et al. 2016). MAPE is also used in this study. MAPE consists of  dividing the absolute error of  

each period by the true value of  that period and calculating an average percentage of  absolute errors 

(Wiguna et al. 2023). The mathematical formula used to calculate MAPE is as follows (Wiguna et al. 2023): 

𝑀𝐴𝑃𝐸 =
1

𝑛
∑|

𝐴𝑡 −𝑌𝑡
𝐴𝑡

|

𝑛

𝑡=1

× 100% (20) 

With, At – actual data; Yt – forecasting data; n – number of  periods. Prediction performance is interpreted 

using a prediction rating scale (Table 3). A summary of  the methods used in the study is presented in 

Figure 4. 
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Table 3. Prediction model performance assessment scale (Gowri et al. 2022; Pinel 2020). 

MAPE Scale of  interpretation Significance 

<10% The ability to predict is very good xxxxx 

10-20% Good ability of  the model for prediction  xxxx 

20-50% The predictive ability of  the model is feasible xxx 

>50% Poor ability of  the prediction model x 

 

Fig. 4. Data and methods used in the study. 

3. Results 

3.1. Descriptive statistics and test of  extreme precipitation indices between 1991 and 2020 

Table 4 shows that the extreme precipitation indices are highly variable for the Bobo-Dioulasso and 

Boromo stations and moderately variable for the Saria station over the period 1991-2020. The variability is 

particularly high for indices such as: r99ptot, r95ptot, cwd, R20mm, and Rx1day. Furthermore, the 

descriptive statistics show that the maxima and minima are relatively higher at the Bobo-Dioulasso station 

than at the other stations (Boromo and Koudougou). This difference could be explained by the climatic 

range of  the stations. The Bobo-Dioulasso station is in the Sudanese zone (with precipitation of  more 

than 900 mm per year). On the other hand, the other stations have low annual precipitation, which varies 

between 600 mm and 900 mm. 

3.2. Trends in the indices of  extreme precipitation between 1991 and 2020: an analysis 

using the Mann-Kendall test 

The Mann-Kendall test shows that there was no trend in the extreme precipitation indices in the three 

cities of  Burkina Faso over the period 1991-2020 (Table 5). The fact remains that a trend was observed 

for the frequency index (r99ptot) in the Bobo-Dioulasso station. 
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Table 4. Descriptive statistics for extreme precipitation indices from 1991 to 2020. 

Station Variable Minimum Maximum Mean Standard deviation CV 
B

o
b
o

-D
io

u
la

ss
o

 

Rx1day 38.1 114 68.9 18.1 26.27 

Rx5day 61.1 208 120.5 33.1 27.47 

sdii 10.2 18.5 14.3 2.1 14.69 

prcptot 675.1 1361.9 1024.7 176.6 17.23 

R10mm 25 45 34.4 5.5 15.99 

R20mm 11 26 18.2 3.8 20.88 

R95ptot 0 568.7 209.1 142.5 68.15 

R99ptot 0 263.7 57.1 74.5 130.47 

cdd 61 106 80.3 11 13.70 

cwd 3 12 5.3 1.9 35.85 

 Variable Minimum Maximum Mean Standard deviation CV 

B
o
ro

m
o

 

Rx1day 44.2 134 75.7 26 34.35 

Rx5day 64.3 216.5 114.6 31.8 27.75 

SDII 10 17.5 14.3 1.8 12.59 

prcptot 643.1 1128.8 915.8 136.3 14.88 

R10mm 23 38 31.3 3.9 12.46 

R20mm 8 23 16 3.6 22.50 

R95ptot 44.2 434.4 199.9 110 55.03 

R99ptot 0 228 65 75 115.38 

cdd 50 117 82.4 15.4 18.69 

cwd 3 10 5 1.7 34 

 Variable Minimum Maximum Mean Standard deviation CV 

K
o
u
d
o
u
go

u
 

Rx1day 50 127 73.1 19.2 26.27 

Rx5day 64 172 115.6 26.2 22.66 

SDII 10.8 17.7 14.3 1.5 10.49 

prcptot 624.8 1151.6 825.3 111.6 13.52 

R10mm 21 34 27.3 3.6 13.19 

R20mm 1 4 2 1 50 

R95ptot 54 307 174.2 75.7 43.46 

R99ptot 0 198 54.9 58.7 106.92 

cdd 63 133 92.8 18 19.40 

cwd 2 8 4.6 1.5 32.61 
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Table 5. Trend in extreme precipitation indices using the Mann-Kendall test. 
B

o
b
o

-D
io

u
la

ss
o
 s

ta
ti
o
n

 

Index classification Indices 
Kendall's 

Tau 
S Var(S) p-value Trend 

Trend 

direction 

Intensity indices 

Precipitation 

rx1day 0.166 72.000 3140.667 0.205 no - 

rx5day 0.124 54.000 3140.667 0.344 no - 

sdii 0.136 59.000 3141.667 0.301 no - 

prcptot 0.103 45.000 3141.667 0.432 no - 

Frequency indices 
Precipitation 

r10mm 0.082 35.000 3121.667 0.543 no - 

r20mm 0.071 30.000 3104 0.603 no - 

r95ptot 0.058 25.000 3137 0.668 no - 

r99ptot 0.262 97.000 2648.333 0.049 Yes increase 

Duration indices 
Precipitation 

cdd 0.058 25.000 3133.667 0.668 no - 

cwd 0.191 73.000 2881 0.180 no - 

B
o
ro

m
o
 s

ta
ti
o
n

 

Intensity indices 
Precipitation 

rx1day -0.018 -8.000 3140.667 0.901 no - 

rx5day 0.085 37.000 3141.667 0.521 no - 

sdii 0.154 67.000 3141.667 0.239 no - 

prcptot 0.071 31.000 3141.667 0.592 no - 

Frequency indices 
Precipitation 

r10mm 0.093 39.000 3091.667 0.494 no - 

r20mm 0.165 69.000 3093 0.221 no - 

r95ptot 0.071 31.000 3141.667 0.592 no - 

r99ptot -0.140 -53.000 2732.333 0.320 no - 

Duration indices 

Precipitation 

cdd -0.028 -12.000 3134 0.844 no - 

cwd 0.003 1.000 2708.333 1.000 no - 

S
ar

ia
 s

ta
ti
o
n

 

Intensity indices 

Precipitation 

rx1day 0 0.000 2558 1.000 no - 

rx5day -0.130 -49.000 2561 0.343 no - 

sdii 0.212 80.000 2562 0.119 no - 

prcptot -0.074 -28.000 2562 0.594 no - 

Frequency indices 
Precipitation 

r10mm -0.125 -46.000 2532.667 0.371 no - 

r20mm 0.076 25.000 2332.333 0.619 no - 

r95ptot 0.011 4.000 2562 0.953 no - 

r99ptot 0.036 12.000 2293.333 0.818 no - 

Duration indices 
Precipitation 

cdd -0.051 -19.000 2557 0.722 no - 

cwd -0.064 -22.000 2432.667 0.670 no - 

3.3. Trends in the indices of  extreme precipitation between 1991 and 2020: an analysis 

using the innovative trend method 

The innovative template trends method shows clear trends in the precipitation extremes indices according 

to the study stations. 

3.3.1. Trends in the indices of  extreme precipitation in the city of  Bobo-Dioulasso 

At this station, especially in the city of  Bobo-Dioulasso, the precipitation intensity indices are increasing 

for prptot, rx5day, and sdii; rx1day decreased non-monotonically. For the extreme precipitation frequency 

indices, the trends are non-monotonic for r20mm, r10mm, and monotonic for r95ptot and r99ptot. 
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Conversely, the duration indices (cdd and cwd) are non-monotonic. Figure 5 summarises the trends of the 

extreme precipitation indices for the city of  Bobo-Dioulasso over the period 1991-2020. 

Figures 5b, 5c, and 5d, which group together precipitation intensity indices, show increases, in contrast to 

Figure 5a. The same applies to precipitation frequency indices. Figures 5f, 5g, and 5h, (but not 5e), are also 

increasing over the period 1991-2020. For the precipitation duration index, Figure 5i shows an increasing 

trend, while Figure 5j shows a non-monotonic increasing trend. The trends in extreme precipitation are 

increasing overall, and this situation could be explained by the climatic range in which the Bobo-Dioulasso 

station is located. The station is in the Sudanian zone, with annual precipitation in excess of  900 mm. 

 

Fig. 5. Template trends of  the extreme precipitation indices (station of  Bobo-Dioulasso).  
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3.3.2. Trends in the indices of  extreme precipitation in the city of  Boromo 

Figure 6 shows the graphical trends at the Boromo station in the town of  Boromo. The precipitation 

intensity indices (Fig. 6b, 6c, 6d) increase monotonically. The precipitation frequency indices (Fig. 6e, 6f, 

6h) are also increasing, with the exception of  Figure 6g, which shows a non-monotonically increasing 

trend. In addition, the trends are non-monotonically decreasing in Figure 6i and non-monotonically 

increasing in Figure 6j. 

 

Fig. 6. Template trends of  the extreme precipitation indices (Boromo station). 
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3.3.3. Trends in the indices of  extreme precipitation in the city of  City of  Koudougou 

The graphical trends of  the extreme precipitation indices for the Saria station are more non-monotonic 

(Fig. 7). Extreme precipitation at the Saria station (city of  Koudougou) shows unclear, even decreasing 

trends for precipitation duration indices, unlike the other two stations studied. This situation could be 

explained by the station's location in the Sudano-Sahelian region, where precipitation varies between 600 

mm and 900 mm per year. 

 

Fig. 7. Template trends of  the extreme precipitation indices (station Saria). 
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3.4. Future projections of  extreme precipitation indices for cities in Burkina Faso from 

2020 to 2030  

It is necessary to assess the performance of  the Holt-Winters model to analyze the predicted precipitation 

indices for the three cities. Two models, additive and multiplicative, were used to assess the accuracy of  

the models proposed for each station. The prediction period is 10 years, specifically 2020-2030. 

3.4.1. The case of  the city of  Bobo-Dioulasso (Bobo-Dioulasso station) 

Table 6 shows that the additive Holt-Winters model is more accurate than the multiplicative Holt-Winters 

model based on the MAPE results. Nevertheless, the additive model does not fit R95ptot and R99ptot 

very well, with values of  86.05 and 73.7, respectively, indicating poor predictive ability of  the model for 

these two indices. However, this model is more appropriate for the other extreme precipitation indices. 

This disparity leads to the use of  the Holt-Winters additive model to analyze the future evolution of  the 

extreme indices. 

3.4.2. The case of  the city of  Boromo (Boromo station) 

The performance of  the additive and multiplicative models , according to MAPE, shows better accuracy 

for the additive model compared to the multiplicative model (Table 7). However, as at the Bobo-Dioulasso 

station, the additive model does not correctly adjust indices such as r95ptot and r99ptot. 

3.4.3. The case of  the city of  Koudougou (Saria station) 

As with the two stations above, the extreme precipitation index data applied to the additive and 

multiplicative models shows that the additive model provides a better fit for the extreme precipitation 

indices at the Saria station (Table 8). 
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Table 6. Results of  the evaluation of  the Holt-Winters additive and multiplicative models for the Bobo-Dioulasso 

station. 

Index 
Model 

parameters 
Observation DDL SCE MCE RMCE MAPE MPE MAE 

  α β γ         

rx1day 0.2 0.2 0.2 30 14 8131.8 580.84 24.10 24.27xxx -8.124 14.3 

rx5day 0.2 0.2 0.2 30 14 41235 2945.36 54.3 37xxx -13.686 37.8 

sdii 0.2 0.2 0.2 30 14 172.5 12.32 3.5 18xxxx -1.628 2.5 

r10mm 0.2 0.2 0.2 30 14 1398.7 99.91 10 20.5xxx 0.409 7.3 

r20mm 0.2 0.2 0.2 30 14 586.8 41.91 6.5 30.6xxx -4.505 5.1 

cdd 0.2 0.2 0.2 30 14 4441.5 317.25 17.8 14.3xxxx -1.094 11.8 

cwd 0.2 0.2 0.2 30 14 98.073 7 2.65 37.8xxx -1.915 1.9 

R95ptot 0.2 0.2 0.2 30 14 913811 65272.2 255.5 86.05x -10.94 198 

R99ptot 0.2 0.2 0.2 30 14 147205 10515 102.5 73.7x 21.68 70.8 

prcptot 0.2 0.2 0.2 30 14 1074813 76772 277.07 20.9xxx -0,590 205.3 

Holt-Winters Seasonal Additive Model 

Index 
Model 

parameters 
Observation DDL SCE MCE RMCE MAPE MPE MAE 

  α β γ         

rx1day 0.2 0.2 0.2 30 14 8543.4 610.2 24.7 26.2xxx -11.2 15.5 

rx5day 0.2 0.2 0.2 30 14 45638.6 3259.9 57.1 37.8xxx -20.2 36.4 

sdii 0.2 0.2 0.2 30 14 171.1 12.2 3.5 18xxxx -3.5 2.5 

r10mm 0.2 0.2 0.2 30 14 1371.1 97.9 9.9 21.7xxx -2.3 7.6 

r20mm 0.2 0.2 0.2 30 14 574.2 41 6.4 31xxx -8.8 5.1 

cdd 0.2 0.2 0.2 30 14 5077.8 362.7 19 16xxxx -2.9 13.1 

cwd 0.2 0.2 0.2 30 14 113.4 8.1 2.8 39.7xxx -13.5 2 

r95ptot 0.2 0.2 0.2 30 14 1139410 81386.5 285.3 100.6x -43.6 213 

R99ptot 0.2 0.2 0.2 30 14 170915.7 12208.3 110.5 83x 15 71.9 

prptot 0.2 0.2 0.2 30 14 1027791 73413.6 270.9 20.9xxx -3 203.4 

Multiplicative Holt-Winters method 

xxxxx: model is very good 

xxxx: Good forecasting ability 

xxx: Model's forecasting ability is feasible 

x: Bad forecasting model ability 
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Table 7. Results of  the evaluation of  the Holt-Winters additive and multiplicative models for the Boromo station. 

Index 
Model 

parameters 
Observations DDL SCE MCE RMCE MAPE MPE MAE 

  α β γ         

rx1day 0.2 0.2 0.2 30 14 31164.6 2226 47.2 48.3xxx -9.4 33.9 

rx5day 0.2 0.2 0.2 30 14 48533 3466.6 59 37.9xxx -7.6 44.3 

sdii 0.2 0.2 0.2 30 14 163 11.6 3.4 18.4xxxx -1.0 2.7 

r10mm 0.2 0.2 0.2 30 14 863.1 61.6 7.9 19.1xxxx -2.5 6 

r20mm 0.2 0.2 0.2 30 14 475 34 5.8 25.8xxx -3.2 4.3 

cdd 0.2 0.2 0.2 30 14 8619 615.6 24.8 21.7xxx -3.8 16.6 

cwd 0.2 0.2 0.2 30 14 118 8.4 2.9 38.9xxx -11.2 1.8 

r95ptot 0.2 0.2 0.2 30 14 681573 48684 220.6 115.9x -55.2 162.4 

r99ptot 0.2 0.2 0.2 30 14 301900 21564.3 146.8 106.3x 73.7 111.7 

prcptot 0.2 0.2 0.2 30 14 102563 73259.4 270.7 23.4xxx -2.2 212.2 

Holt-Winters Seasonal Additive Model 

Index 
Model 

parameters 
Observations DDL SCE MCE RMCE MAPE MPE MAE 

  α β γ         

rx1day 0.2 0.2 0.2 30 14 33035 2359.6 48.5 53.7x -27.2 35.6 

rx5day 0.2 0.2 0.2 30 14 60375 4312.5 65.7 44.1xxx -18.8 49.9 

sdii 0.2 0.2 0.2 30 14 189.2 13.5 3.6 20xxxx -3.8 2.9 

r10mm 0.2 0.2 0.2 30 14 988 70.5 8.4 20.2xxx -5.3 6.3 

r20mm 0.2 0.2 0.2 30 14 682.5 48.7 6.9 31.2xxx -10.3 5.1 

cdd 0.2 0.2 0.2 30 14 8916 636.8 25.2 22.3xxx -5.8 16.9 

cwd 0.2 0.2 0.2 30 14 135.4 9.6 3.1 44.1xxx -22.01 1.9 

r95ptot 0.2 0.2 0.2 30 14 1815688 129691.9 360.1 211.8x -177.9 244.5 

R99ptot 0.2 0.2 0.2 30 14 167615 11972.4 109.4 64.1x 63.6 77.6 

prcptot 0.2 0.2 0.2 30 14 1228361 87740 296.2 25.2xxx -6.6 226.3 

Multiplicative Holt-Winters method 

xxxxx: model is very good 

xxxx: Good forecasting ability 

xxx: Model's forecasting ability is feasible 

x: Bad forecasting model ability 
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Table 8. Results of  the evaluation of  the Holt-Winters additive and multiplicative models for the Boromo station. 

Index 
Model 

parameters 
Observations DDL SCE MCE 

RMC
E 

MAPE MPE MAE 

  α β γ         

rx1day 0.2 0.2 0.2 28 12 10161.9 846.8 29.1 27.7xxx -1.8 21.4 

rx5day 0.2 0.2 0.2 28 12 17430.9 1452.6 38.1 21.7xxx -5.6 24.3 

sdii 0.2 0.2 0.2 28 12 41.5 3.5 1.9 8.9xxxxx 2.2 1.3 

r10mm 0.2 0.2 0.2 28 12 640.5 53.4 7.3 20.4xxx -1.9 5.6 

r20mm 0.2 0.2 0.2 28 12 33.3 2.8 1.7 53.8x -17.3 1.1 

cdd 0.2 0.2 0.2 28 12 15067 1255.6 35.4 31xxx -2.5 26.5 

cwd 0.2 0.2 0.2 28 12 135 11.3 3.4 68.2x -28.5 2.5 

r95ptot 0.2 0.2 0.2 28 12 147144 12262 110.7 43.1xxx -5 75.6 

r99ptot 0.2 0.2 0.2 28 12 67676.3 5639,7 75.1 71.9x 17.8 53.1 

prcptot 0.2 0.2 0.2 28 12 553259 46101 214.7 19.3xxxx -0.9 160.2 

Holt-Winters Seasonal Additive Model 

Index 
Model 

parameters 
Observations DDL SCE MCE 

RMC

E 
MAPE MPE MAE 

  α β γ         

rx1day 0.2 0.2 0.2 28 12 13309.3 1109.1 33.3 31.3xxx -11.5 23.6 

rx5day 0.2 0.2 0.2 28 12 18357 1529.7 39.1 22.5xxx -9.7 24.7 

sdii 0.2 0.2 0.2 28 12 38.2 3.2 1.8 8.6xxxxx 1.8 1.3 

r10mm 0.2 0.2 0.2 28 12 672 56 7.5 20.6xxx -4.3 5.6 

r20mm 0.2 0.2 0.2 28 12 65.6 5.5 2.3 77.7x -52.1 1.5 

cdd 0.2 0.2 0.2 28 12 14366.2 1197.2 34.6 30.8xxx -7.2 26 

cwd 0.2 0.2 0.2 28 12 157.4 13.1 3.6 74x -49.6 2.5 

R95ptot 0.2 0.2 0.2 28 12 315065 26255.4 162 62.2x -38.4 110.7 

R99ptot 0.2 0.2 0.2 28 12 75320.3 6276.7 79.2 83x 38 59.4 

prcptot 0.2 0.2 0.2 28 12 521007 43417 208.4 19xxxxx -3.8 155.5 

Multiplicative Holt-Winters method 

xxxxx: model is very good 

xxxx: Good forecasting ability 

xxx: Model's forecasting ability is feasible 

X: Bad forecasting model ability 
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3.5. Projection trajectories between 2020 and 2030 for extreme precipitation indices  

Because the additive model is a better fit to the extreme precipitation index data from the study stations, 

this model is adopted for future predictions for the period 2020-2030. In addition, the fit of  the model 

varies between the study stations. Therefore, the analyses are based on the study stations. 

3.5.1. The case of  the city of  Bobo-Dioulasso (Bobo-Dioulasso station) 

The results of  the predictions for the 2030 period show that the precipitation intensity indices (rx1day, 

r5day, sdii, and prcptot) and the precipitation frequency indices (r10mm, r20mm, r95ptot, r99ptot) will 

increase between 2020 and 2030. The situation is different for the precipitation duration indices , with 

CDD steadily increasing until 2030 and CWD decreasing over the same period (Fig. 8). In the figure, blue 

indicates observed precipitation extremes, and red lines indicate the Holt-Winters prediction of  

precipitation extremes. The dotted green line indicates the trend. The figure shows that the indices rx5day 

and cwd display downward trends until 2030. On the other hand, the other indices (rx1day, sdii, prcpot, 

r10mm, r20mm, r95pot, r99pot) show increasing trends until 2030. Given this situation, flooding and 

water-borne diseases are likely to be a problem in the city in the coming years. 

3.5.2. The case of  the city of  Boromo (Boromo station) 

At this station, precipitation intensity and duration indices are increasing (Fig. 9). However, the 

precipitation frequency indices show different trends. R10mm and r99ptot decrease, while r20mm and 

r95ptot increase from 2020 to 2030. 

3.5.3. The case of  the city of  Koudougou (Saria station) 

The precipitation intensity indices show different trends. In fact, rx1day and rx5day are decreasing, while 

sdii and prcptot increase continuously from 2020 to 2030. The same is true for the precipitation frequency 

indices, which show a decreasing trend for r10mm, r95ptot, and r99ptot. The only frequency index that 

increases is r20mm. In addition, the precipitation duration indices increase from 2020 to 2030. The city of  

Koudougou should suffer less from climatic disasters than the other two cities, in the sense that intensity 

and frequency are low over the period 2020-2030. However, the increase in precipitation duration will be 

detrimental to farmers on the outskirts of  the city and urban market gardeners. Figure 10 shows the 

changes in extreme precipitation indices from 2020 to 2030. The figure shows that two forecast trends are 

also noticeable at the Saria station. In contrast to the other stations, the forecast trends are more negative 

than positive. The downward trends are represented by Figure 10 (rx1day), (rx5day). Conversely, Figure 10 

(sdii), (prcptot), (r20mm), and (cdd) shows upward trends. Thus, the city of  Koudougou may be less 

affected by extreme precipitation than the other two cities of  Bobo-Dioulasso and Boromo. 
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Fig. 8. Predictions of  the changes in the indices of  extreme precipitation for the station of  Bobo-Dioulasso. 
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Fig. 9. Predictions of  the changes in the indices of  extreme precipitation for the station of  Boromo. 
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Fig. 10. Predictions of  the changes in the indices of  extreme precipitation for the station of  Saria. 
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4. Discussion 

4.1. Analysis of  inter-annual variability and trends in extreme precipitation indices in 

West Africa 

Time series are records of  processes that change over time (Ihaka 2005). This study has shown strong 

variability in extreme precipitation indices at the three study stations. In addition, the extreme precipitation 

indices showed a continuous increase from 1991 to 2020. The results confirm the work of  other authors 

in Burkina Faso and West Africa (Bigi et al. 2018). Indeed, extreme precipitation indices such as rx1day, 

rx5day, prcptot, and sdii increased and r95ptot decreased from 1991 to 2021 in the Boucle du Mouhoun 

region of  Burkina Faso (Rouamba et al. 2023). Yanogo and Yaméogo (2023) also note that indices such as 

prcptot and r95ptot are increasing for the Ouahigouya station in Burkina Faso. These results are 

confirmed by the study of  Tazen et al. (2019) in Burkina Faso, which showed an upward trend in indices 

such as Rx1day, Rx5day, and r99ptot from 1961 to 2015. This trend has also been observed in other West 

African countries by various authors. In Niamey, Niger, the same indices (rx1day, rx5day, prcptot) also 

increased between 1990 and 2020 (Bassirou et al. 2023). Bigi et al. (2018) add that a similar trend was 

observed in Niamey city (Niger) between 1980 and 2009. This confirms the studies by Konate et al. (2023) 

in Côte d'Ivoire during 1961-2015. Indeed, the authors note that indices such as prcptot, sdii, rx1day, 

rx5day, r20mm, r95ptot, and r99ptot increased in Ivorian cities (Gagnoa, Daloa, Yamoussoukro), while 

cdd and cwd decreased between 1961 and 2015. In other cities (Korhogo, Odienné, Bondoukou, Man, 

Abidjan, Adiaké, San-Pedro, Tabou, Sassandra), indices such as prcptot, sdii, CDD, CWD, R10mm, and 

R20mm show significantly negative trends (Konate et al. 2023). The exception is San-Pedro, which shows 

significantly positive trends for the prcptot, sdii, CDD, and R10mm indices. This situation shows that 

when the zones are located in the Ivory Coast's Sudanese-type climate, the trends of  the indices are 

negative. On the other hand, when the zones are located in the Baulean-type climate zones, the extreme 

precipitation indices tend to show positive trends overall. Furthermore, in the Attean climate, the 

precipitation indices are positive overall. It is therefore clear that the trends vary according to the climatic 

zone, a situation that is also revealed by the results of  the zones studied using the innovative method. 

4.2. Analysis of  the predictions of  the extreme precipitation index  

Forecasting precipitation is important for two reasons: it is a major scientific challenge, but it is also 

crucial for planning and developing agricultural strategies (Graham, Mishra 2017). In the study cities, 

precipitation intensity and frequency indices are expected to increase between 2020 and 2030 in the large 

city of  Bobo-Dioulasso, the medium-sized city of  Koudougou, and the small city of  Boromo. However, 

the city of  Koudougou should be less affected than the other two cities, as many extreme indices such as 

cdd, r95ptot, r99ptot, r10mm, rx1day and rx5day will decrease continuously until 2030. These results are 

consistent with those for Africa (Abiodun et al. 2017). Indeed, the authors note that coastal cities will 

experience an increase in extreme precipitation indices, with cities such as Maputo, Logos, and Port Said 

expected to experience an increase in the intensity and frequency of  extreme precipitation between 2081 

and 2100. Other authors, such as Biasutti (2013) and Trepekli et al. (2019), note that precipitation is 

97



expected to be concentrated in more intense extreme precipitation events, interspersed with long periods 

of  low precipitation over the West African Sahel. Another study conducted in Africa by Habiyakare et al. 

(2024) confirms the findings of  the previous authors. In fact, according to these authors, West Africa, 

East Africa, and the eastern part of  South Africa show an increasing trend in extreme precipitation, and 

changes in extreme precipitation indices show a general increase in the occurrence and frequency of  

extreme precipitation indices in all scenarios by the end of  the 21st century. 

4.3. The sources of  uncertainty and limitations of  the methods 

Precipitation in Burkina Faso tends to be erratic from month to month and season to season. This makes 

it difficult to make accurate forecasts. The Holt-Winters exponential smoothing method is therefore used 

in this study. This method has clear advantages because it accounts for trends and seasonality (Pongdatu, 

Putra 2018), which corresponds to the characteristics of  precipitation in the tropics. This situation has led 

other authors (Pertiwi 2020) to use this method in the tropics. However, this method has shortcomings 

that need to be considered. The method is deterministic because for each point in the future, the forecast 

provides a single value that approximates the future outcome. It does not allow other possibilities to be 

considered. In addition, exponential smoothing forecasting techniques only consider historical data, which 

means that they ignore any information that may be generated at the same time (Pardoux, Goldfarb 2013). 

Pinel (2020) adds that the Holt-Winters method has three major shortcomings: first, there is no guarantee 

that the method is optimal for a given data series; exponential smoothing methods are sometimes far from 

optimal. In addition, forecasts are more accurate in the short term (a few years). On the other hand, they 

cannot provide forecast intervals, i.e. an interval containing the forecast with a given probability. This is 

because a probabilistic framework has not yet been defined. Thus, the results of  the forecasting study are 

limited. Indeed, if  the period considered is intermediate (2020-2030), the forecasts of  the Holt-Winters 

method become less accurate as the time considered is extended. In this study, therefore, the forecast for 

the first five years (2020-2025) is more accurate than that for the remaining five years (2025-2030). In 

addition, the data analysis is done with software that only allows models of  deterministic precision as 

mean square error, and the choice of  parametric models is limited to 0.2 α, β, and γ. These constraints do 

not allow for any flexibility in the accuracy of  the forecasts. Nevertheless, our results provide decision-

makers with an indication of  the evolution of  extreme precipitation indices over the period 2020-2030, 

with greater accuracy between 2020 and 2025, given the short-term option of  the forecasting method. 

5. Conclusions 

The study analyzed the trends and projected trajectories of  extreme precipitation indices in the cities of  

Burkina Faso. The precipitation intensity and frequency indices are variable, with an upward trend for the 

cities of  Bobo-Dioulasso, Boromo, and Koudougou. Template trends also show a steady increase in 

precipitation intensity and frequency indices for the cities of  Bobo-Dioulasso and Boromo. For the city of  

Koudougou, a non-monotonic increasing trend is observed for the precipitation intensity and frequency 

indices. The rain duration indices show a non-monotonic decreasing trend. The Holt-Winters method can 

98



be used to make short-term predictions. This method was used to predict extreme precipitation indices 

between 2020 and 2030, which are increasing for the intensity and frequency indices in the cities of  Bobo-

Dioulasso and Boromo. However, the indices have relatively high variability, accompanied by an upward 

trend over the period 2020-2030. Under these conditions, the authorities in the affected towns should give 

absolute priority to widening the gutters to allow rainwater to drain away. In addition, the town of  

Boromo is in a special situation compared to the others, since its population has increased in response to 

internal migration caused by terrorism in the country. The migrants have settled in flood-prone areas, and 

the local authorities should encourage them to move away from easily flooded areas. 
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Simulation of runoff under climate change in the tropical Ba River basin, Vietnam 
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Abstract 

Tropical river basins exhibit complex hydrological dynamics and are increasingly susceptible to the impacts of climate 

change. However, there remains a lack of data and methodological frameworks to comprehensively assess runoff 

responses in these regions. This study proposes a framework for evaluating the impact of climate change on runoff in 

the Ba River basin. Long-term trends in temperature, rainfall, and discharge from 1981 to 2020 were analyzed. The 

SWAT model was applied to simulate future discharge under four climate change scenarios (SSP1-2.6, SSP2-4.5, 

SSP3-7.0, and SSP5-8.5) for the periods 2021-2040, 2041-2060, 2061-2080, and 2081-2100. Results indicate that 

annual discharge at the An Khe station (upper basin) is projected to decline by 30.2 to 39.0%, while the Cung Son 

station (lower basin) is expected to experience change ranging from –4.0% to +15.6%. During the flood season, 

discharge is projected to decrease at the An Khe station (–6.1 to –17.3%) but increase substantially at the Cung Son 

station (+32.0 to +57.9%). In contrast, low-flow season discharge is projected to decline sharply at both stations by 

68.0 to 85.2% at the An Khe station and 86.7 to 98.6% at the Cung Son station. The anticipated reduction in low-

flow-season discharge highlights critical risks for water security in tropical basins. These findings underscore the 

urgent need for improved management strategies and operational frameworks to ensure sustainable water use under 

future climate conditions. 
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1. Introduction 

According to the World Economic Forum’s Global Risk Report of 2020 (WEF 2020), climate change is 

one of the most significant global challenges, both in terms of probability and impact. It profoundly 

disrupts the hydrological cycle, altering runoff patterns and influencing the frequency and intensity of 

extreme weather events (Esit, Yuce 2022; Tayara-Zobaida 2023). The acceleration of global warming 

exacerbates these effects, increasing risks globally. The average global temperature has risen by 

approximately 1.0°C compared to pre-industrial levels, with the period from 2015 to 2019 being the 

hottest years on record. This rise in temperature has significantly altered the frequency, duration, 

magnitude, and spatial distribution of extreme weather events. Moreover, a report by the World 

Meteorological Organization in 2021 (WMO 2021) revealed that, due to climate change, at least 3.6 billion 

people worldwide faced water scarcity each month in 2018. This number is expected to rise to 5 billion by 

2050, highlighting the intensifying impact of climate change on global water resources. As  a result, climate 

change presents significant challenges to sustainable water resource management worldwide. In Central 

Asia, including Kazakhstan, Uzbekistan, Kyrgyzstan, Turkmenistan, and Tajikistan, more than 93% of the 

land is arid. Since the 1970s, nearly half of the large lakes in this region have shrunk, and rivers are rapidly 

drying up, attributable to both climate change and human activities (Yue et al. 2021). In the Mediterranean 
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region, global warming is occurring at a faster rate than in other parts of the world, resulting in significant 

changes in temperature, precipitation, and other climatic variables (Lionello, Scarascia 2018). Australia, 

too, has experienced a 1.0°C increase in temperature and a 16% decrease in rainfall since the 1970s 

(Silberstein et al. 2012), leading to more intense heatwaves, severe bushfire weather, reduced rainfall, and 

prolonged droughts (Aryal et al. 2020). 

Vietnam, in Southeast Asia’s tropical monsoon zone, is highly exposed to the impacts of climate change  

(Schmidt-Thomé et al. 2014). Between 1958 and 2018, the annual temperature in the country rose 0.89°C 

(approximately 0.15°C per decade) (MONRE 2021). Rainfall patterns have become more variable, with 

northern Vietnam experiencing a decrease in rainfall (5-10% over 61 years), while southern Vietnam has 

seen an increase (5-15% over the same period) (MONRE 2021). Additionally, the fluctuations between 

high and low water volumes during different seasons create challenges for water usage and integrated 

water resources management in Vietnam’s river basins. The impacts of climate change on water resources 

vary greatly across regions (Guo et al. 2014; Lobodzinskyi et al. 2023), making it essential to conduct 

location-specific assessments, especially in tropical regions, which are undergoing significant changes. The 

Ba River basin, one of the largest river basins in the Central Highlands and south-central coast of 

Vietnam, plays a vital role in regional agriculture, hydropower generation, and domestic water supply. 

However, this basin has been increasingly subjected to hydrometeorological extremes such as droughts 

and floods, which are expected to intensify under future climate scenarios. 

Despite the growing number of studies on climate change impacts on water resources in Vietnam, 

significant research gaps remain, particularly for the Ba River basin. First, most previous studies have 

focused on major river systems such as the Red River (Duong 2016; Duong et al. 2016; Ha, Bastiaanssen 

2023; Nguyen, Tran 2024) and Mekong River basins (Khoi, Thang 2017; Le et al. 2024; Sam, Khoi 2022), 

leaving medium-sized basins like the Ba River relatively understudied. Second, existing assessments often 

rely on historical data or outdated climate scenarios (e.g., RCPs), with limited application of updated 

CMIP6-based shared socioeconomic pathways (SSPs) for long-term projections. The CMIP6 (Eyring et al. 

2016) project’s global climate models (GCMs) are better at predicting the global energy balance (Wild 

2020). Third, spatially explicit analyses of runoff changes within sub-basins or critical water-demand zones 

are scarce, limiting the understanding of local vulnerabilities. Additionally, little attention has been given to 

seasonal water shortages, especially during the dry season when competition for water use among 

agriculture, domestic supply, and hydropower becomes most intense. Uncertainty analysis , an essential 

component for validating climate-impact assessments, is often lacking or insufficiently addressed. 

Furthermore, there is a lack of integration between hydrological modeling outcomes and practical water 

management or adaptation strategies tailored to local contexts. 

This study aims to address these gaps by developing a scientific framework for evaluating the impacts of 

climate change on runoff in the Ba River basin. Several previous studies have considered the development 

of a framework for assessing the impact of climate change on water resources (Hrour et al. 2023). 

Hydrological models are the main tools in this realm (Phan et al. 2010; Bekele et al. 2019; Kohnová et al. 
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2019; Khoi et al. 2021; Tariku et al. 2021; Gurung et al. 2022; Takele et al. 2022; Yang et al. 2022). 

However, the scarcity of monitoring stations within a basin poses a significant challenge for water 

resources research, an issue commonly encountered in basins worldwide. Using a combination of 

observed data (1981-2020), projected data under four SSP scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and 

SSP5-8.5) for the periods 2021-2040, 2041-2060, 2061-2080, and 2081-2100, and an integrated modeling 

approach, this research analyzes both historical trends and future changes in runoff. The Mann-Kendall 

test is applied to detect trends in temperature, rainfall, and runoff data; the Soil and Water Assessment 

Tool (SWAT) is used to simulate runoff responses to climate variations. The outcomes of this study are 

expected to provide valuable insights for water resource planning and adaptation strategies in tropical river 

basins under changing climate conditions. 

2. Methods and materials 

2.1. Study area  

The Ba River basin (Fig. 1), covering an area of 13,848 km², was selected as the study area, with its upper 

part in the Central Highlands and its lower part in the south-central coastal region of Vietnam. The Ba 

River basin plays a vital role in the socio-economic development of the Central region, spanning three 

provinces: Gia Lai, Dak Lak, and Phu Yen, supporting a population of approximately two million people. 

The terrain ranges from 0 m above sea level (asl) in the eastern coastal plain to a maximum elevation of 

1,983 m asl in the northern mountainous area, with an average basin elevation of 469 m asl. The Ba River 

originates from Ngoc Ro Peak (1,549 m asl) in the Truong Son Mountain range; the mainstem length is 

374 kilometers. The river network density is approximately 0.22 km per km². 

The Ba River basin, located in the tropical climate zone, is monitored by four meteorological stations , An 

Khe, AyunPa, MDrak, and Tuy Hoa, and by two hydrological stations, An Khe and Cung Son, which 

collected data from 1981 to 2020. The characteristics of these stations are summarized in  Table 1. The 

meteorological stations provide daily data on rainfall, temperature, humidity, wind speed, and solar 

radiation, while the hydrological stations record discharge and water levels within the basin. 

The variability of climatic factors in tropical river basins is very complex, and the Ba River basin is a clear 

example. Descriptive statistics for 30 data series at 4 meteorological stations and 2 hydrological stations in the 

Ba River basin are presented in Table 2. The temperature in the Ba River basin varies widely across the basin. 

Normally, the temperature in the high mountainous area is lower than on the plains. During the period 1981-

2020, the average annual temperatures at the An Khe, AyunPa, MDrak, and Tuy Hoa meteorological stations 

were 23.7°C, 25.5°C, 24.0°C, and 26.8°C, respectively. The difference between the maximum and minimum 

monthly temperatures in the basin ranges between 6 and 7°C. The maximum temperature in the basin is 41.3°C 

at the AyunPa station; the minimum is 9°C at the An Khe station. 
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Fig. 1. Distribution of monthly temperature (T), rainfall (R) and discharge (Q) in the Ba River basin. 

Table 1. Network of gauging stations in the Ba River basin. 

No Station Longitude Latitude Elevation (m) Observation period 

Meteorological station 

1 An Khe 108.03°E 13.97°N 442.16 1981-2020 

2 AyunPa 108.47°E 13.47°N 159.70 1981-2020 

3 MDrak 108.75°E 12.73°N 419.03 1981-2020 

4 Tuy Hoa 109.28°E 13.08°N 10.90 1981-2020 

Hydrological station 

5 An Khe 108.65°E 13.95°N  1981-2020 

6 Cung Son 108.98°E 13.04°N  1981-2020 

Annual rainfall in the Ba River basin is also highly variable and complex in both spatial and temporal 

distribution, depending significantly on topography and atmospheric circulation. The average annual 

rainfall in the Ba River basin is spatially variable: 1638 mm at the An Khe station, 1249 mm at the AyunPa 

station, 2103 mm at the MDrak station, and 2052 mm at the Tuy Hoa station during the period 1981-

2020. The rainy season accounts for approximately 90% of total annual rainfall (from May to December) 

in mountainous areas and 75-85% (from September to December) in coastal plains. Heavy rainfall events 

occur especially in October and November. During the dry season, rainfall accounts for only 10-25% of 

the annual total.  

The average annual discharge was 28 m³/s at the An Khe station and 273.4 m³/s at the Cung Son station 

during the period 1981-2020. In the upstream area, the flood season lasts four months (from September 

to December) due to the influence of the southeastern monsoon. In the downstream area located on the 

eastern slope of the Truong Son Range, the flood season lasts three months (from October to December), 
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influenced by the northeastern monsoon circulation and associated weather disturbances. The flood 

season in the Ba River basin is typically short, but it contributes approximately 70% of the annual water 

volume. The highest flows occur in October in the upstream area and in December in the downstream 

area. The low-flow modulus of the Ba River basin is 9.2 l/s/km². The low-flow season discharge of the Ba 

River basin is among the lowest in Vietnam. The month with the lowest discharge is typically April, during 

which discharge accounts for less than 2% of the total annual flow. 

Table 2. Statistical results for observed data series at stations. TA = average annual temperature, TX = maximum 

temperature, TN = minimum temperature, RA = annual rainfall, RX = maximum 1-day rainfall, Qy = average 

annual discharge, Qf = discharge in flood season, Qd = discharge in low-flow season, Qx = maximum 

discharge, Qn = minimum discharge. 

No Station Parameter Minimum Maximum Mean 
Std. 

deviation 
Skewness Kurtosis 

Meteorological station 

1 An Khe 

TA (°C) 22.98 26.09 23.80 0.64 1.78 4.56 

TX (°C) 34.90 40.00 36.59 1.17 0.81 0.55 

TN (°C) 9.00 15.50 12.63 1.51 –0.42 –0.15 

RA (mm) 684.90 3442.30 1638.42 530.53 0.00 4.56 

RX (mm) 46.40 260.10 139.69 56.48 0.47 –0.64 

2 AyunPa 

TA (°C) 25.20 27.20 25.96 0.53 0.63 –0.52 

TX (°C) 36.90 41.30 38.89 0.99 0.27 0.06 

TN (°C) 10.30 16.70 13.26 1.71 -0.11 –0.81 

RA (mm) 696.90 1765.00 1248.57 258.29 0.11 –0.45 

RX (mm) 50.00 211.60 109.71 38.06 1.10 1.45 

3 MDrak 

TA (°C) 23.26 24.88 23.96 0.44 0.40 –0.97 

TX (°C) 26.70 37.80 31.88 3.56 0.41 –1.35 

TN (°C) 11.80 16.90 13.85 1.19 0.17 –0.16 

RA (mm) 914.50 4224.80 2103.38 679.48 1.12 1.21 

RX (mm) 59.90 443.40 172.26 87.15 1.53 2.66 

4 Tuy Hoa 

TA (°C) 25.92 28.06 26.81 0.48 0.61 0.23 

TX (°C) 36.60 40.50 38.61 0.82 0.13 –0.04 

TN (°C) 2.20 19.70 17.09 2.68 –4.57 25.46 

RA (mm) 963.40 3360.00 2052.21 574.86 0.61 –0.32 

RX (mm) 91.20 628.90 231.63 134.86 1.50 1.74 

Hydrological station 

5 An Khe 

Qy (m3/s) 6.86 67.77 28.04 13.54 0.77 0.55 

Qf (m3/s) 5.09 181.90 58.76 41.90 1.06 0.67 

Qd (m3/s) 4.28 34.35 14.22 5.92 1.50 3.34 

Qx (m3/s) 106.00 3060.00 1156.30 751.31 0.75 0.27 

Qn (m3/s) 0.10 11.00 5.22 2.64 0.20 –0.15 

6 Cung Son 

Qy (m3/s) 107.39 477.04 273.43 94.04 0.33 –0.36 

Qf (m3/s) 124.20 1164.50 586.55 259.68 0.08 –0.76 

Qd (m3/s) 45.24 230.63 116.87 42.47 0.65 0.69 

Qx (m3/s) 559.00 20700.00 6206.43 4074.48 1.21 2.63 

Qn (m3/s) 1.40 80.00 20.04 17.30 1.44 2.78 
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Since 2001, six major hydroelectric reservoirs have operated within the Ba River basin (Fig. 1), with a total 

storage capacity of 1455 × 106 m³, approximately 17% of the average annual water volume recorded at the 

Cung Son station. Located upstream from this station, the reservoirs have a substantial influence on the 

flow regime. The average annual discharge at Cung Son declined from 300 m³/s in 1981-2000 to 247 m³/s 

in 2001-2020. These changes indicate that both climate change and hydropower activities have contributed 

to alterations in the flow regime of the basin. This study adopts the 1981-2000 period as the baseline to 

evaluate the impacts of climate change on runoff in the Ba River basin. 

2.2. Homogeneity test of data series 

Ensuring the homogeneity of temperature, rainfall, and discharge data series is a crucial step in 

hydrometeorological analysis. Tests such as Pettitt’s, the standard normal homogeneity test (SNHT), 

Buishand range test, and the von Neumann test are widely applied to detect inhomogeneities or change-

points in observed data series. Pettitt’s test, a non-parametric method, can detect abrupt changes at any 

point in the series without assuming a normal distribution. The SNHT is particularly effective in 

identifying shifts in the mean that occur near the center of the series, which may result from changes in 

station location or instrumentation. The Buishand Range test evaluates changes in the mean by analyzing 

cumulative deviations from the overall mean, making it suitable for detecting step changes. The von 

Neumann test is used to assess randomness in the data, helping to identify inhomogeneities caused by 

irregular changes between consecutive observations. Applying these tests to rainfall or streamflow data 

enables researchers to verify and cross-check results, thereby increasing the reliability of homogeneity 

assessments. Early detection of inhomogeneities allows for correction or adjustment of the data, 

minimizing systematic errors. As a result, trend analysis, simulation, and projections based on the data 

become more accurate. These procedures are particularly important for evaluating the impacts of climate 

change on water resources. This research used the XLSAT tool in Excel to calculate Pettitt’s test, SNHT, 

the Buishand range test, and the von Neumann test. To test the homogeneity of the observation data 

series, Pettitt’s test, SNHT, the Buishand range test, and the von Neumann test at 5% significance level. 

were calculated by XLSTAT. The homogeneity test results for 30 datasets are shown in Table 3. The 

results were classified into three categories, namely “useful,” “doubtful,” and “suspect,” based on four 

homogeneity tests to select the homogeneous observed data series. The results of the Pettitt test, SNHT, 

Buishand test, and Von Neumann ratio test showed that 10, 11, 11, and 7 out of the 30 data sets, 

respectively, were identified as inhomogeneous. 

The annual average temperature (TA) data showed inhomogeneity at AyunPa, MDrak, and Tuy Hoa 

stations. The maximum temperature (TX) data indicated inhomogeneity at MDrak station, while the 

minimum temperature (TN) data revealed inhomogeneity at An Khe and AyunPa stations. The annual 

rainfall (RA) data were homogeneous across all monitoring stations; however, the data on the maximum 

1-day rainfall (RX) indicated inhomogeneity at AyunPa. The breakpoints detected by all tests tended to 

occur at various points throughout the study period.  
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Table 3. Homogeneity test results for observed data series at meteorological stations using different methods at 95% 

significance level. TA = average annual temperature, TX = maximum temperature, TN = minimum temperature, RA 

= annual rainfall, RX = maximum 1-day rainfall, Qy = average annual discharge, Qf = discharge in flood season, 

Qd = discharge in low-flow season, Qx = maximum discharge, Qn = minimum discharge. 

No Station Parameter 
p value 

Result 
Pettitt SNHT Buishand Von Neumann 

Meteorological station 

1 An Khe 

TA 0.001 0.088 0.053 0.246 Useful 

TX 0.762 0.039 0.270 0.285 Useful 

TN 0.008 0.002 0.003 0.019 Suspect 

RA 0.080 0.077 0.008 0.105 Useful 

RX 0.487 0.233 0.204 0.311 Useful 

2 AyunPa 

TA <0.0001 0.000 0.000 <0.0001 Suspect 

TX 0.869 0.099 0.277 0.676 Useful 

TN 0.007 0.004 0.001 0.056 Suspect 

RA 0.139 0.136 0.056 0.756 Useful 

RX 0.027 0.041 0.011 0.285 Suspect 

3 MDrak 

TA <0.0001 <0.0001 <0.0001 <0.0001 Suspect 

TX <0.0001 <0.0001 <0.0001 <0.0001 Suspect 

TN 0.241 0.095 0.056 0.574 Useful 

RA 0.516 0.418 0.238 0.156 Useful 

RX 0.885 0.759 0.654 0.431 Useful 

4 Tuy Hoa 

TA 0.000 0.001 0.000 0.001 Suspect 

TX 0.845 0.793 0.597 0.925 Useful 

TN 0.411 0.099 0.040 0.615 Useful 

RA 0.579 0.711 0.856 0.747 Useful 

RX 0.312 0.155 0.051 0.121 Useful 

Hydrological station 

5 An Khe 

Qy 0.254 0.045 0.160 0.052 Useful 

Qf 0.266 0.006 0.189 0.077 Useful 

Qd 0.571 0.593 0.533 0.034 Useful 

Qx 0.882 0.604 0.825 0.639 Useful 

Qn 0.033 0.004 0.020 0.065 Suspect 

6 Cung Son 

Qy 0.744 0.280 0.293 0.383 Useful 

Qf 0.953 0.250 0.434 0.778 Useful 

Qd 0.456 0.937 0.726 0.549 Useful 

Qx 0.891 0.822 0.556 0.334 Useful 

Qn <0.0001 0.004 <0.0001 0.001 Suspect 

The data on average annual discharge, flood season flow, dry season flow, and maximum discharge are all 

homogeneous. Meanwhile, the minimum discharge data show inhomogeneity at both An Khe and Cung 

Son stations. It can be seen that many hydrometeorological data series lack homogeneity, which creates 

difficulties in calculations and assessments. Several studies aimed at checking the homogeneity of 

hydrometeorological data series have yielded comparable results. For instance, a study of annual rainfall 

data in Turkey (Bickici Arikan, Kahya 2019) from 1974 to 2014 identified 44 out of 160 stations as having 
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non-homogeneous data. Likewise, research on rainfall, temperature, and humidity in Nineveh 

Governorate (Iraq) (Elzeiny et al. 2019) during the 1990-2020 period also revealed non-homogeneity in 

some data series across the 8 monitoring stations analyzed. 

2.3. Trend analysis using the Mann-Kendall test 

The Mann-Kendall non-parametric statistical test (Kendall 1970), further developed by the U.S. 

Geological Survey (Helsel et al. 2006), has been widely used in climate and hydrological sciences to detect 

trends in time series data. In this study, the Mann-Kendall test was applied to identify trends in climatic 

and hydrological variables in the Ba River basin. Observed data from the period 1981 to 2020 were used 

in the analysis. 

The data values are evaluated as an ordered time series where each data value is compared to all 

subsequent data values. a1, a2, … an represent n data points where aj represents the data point at time j and 

aj and ak are sequential data in series. The Mann-Kendall test statistic (S) is identified using the following 

equation: 

𝑆 =  ∑ ∑ 𝑠𝑖𝑔𝑛(𝑎𝑗

𝑛

𝑗=𝑘+1

𝑛−1

𝑘=1

  −   𝑎𝑘)   (1) 

Where: 

sign (aj – ak) 

= 1 if aj – ak > 0 

= 0 if aj – ak = 0 

= –1 if aj – ak < 0 

𝑇𝑎𝑢 =
𝑆

𝑛(𝑛 − 1)/2
 (2) 

The variance of S, VAR(S) is calculated by the following equation: 

𝑉𝐴𝑅(𝑆) =  
1

18
[𝑛(𝑛 − 1)(2𝑛 + 5) − ∑ 𝑡𝑝(𝑡𝑝 − 1)(2𝑡𝑝 + 5)

𝑔

𝑝=1

] (3) 

Where n is the number of data points, g is the number of tied groups, and tp is the number of data points 

in the pth group.  

The normalized Z statistics value is used to test the trend, in which a negative value Z statistic indicates 

a decreasing trend, while a positive value Z statistic indicates an increasing trend. The following formula is 

used to calculate a normalized test statistic Z:  
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Z 

= 
𝑆 − 1 

[𝑉𝐴𝑅(𝑆)]1 2⁄  if S > 0  

= 0 if S = 0 (4) 

= 
𝑆 + 1 

[𝑉𝐴𝑅(𝑆)]1 2⁄  if S < 0  

2.4. Bias correction using CMHyd 

Cropland accounts for 45-50% of the Ba River basin (CCI 2017), which is why this study uses predicted 

data from the ACCESS-ESM1.5 model. ACCESS-ESM1.5 is Australia’s version of a global climate model 

and one of 23 models participating in Phase 6 of the Coupled Model Intercomparison Project (CMIP6) 

collected from WorldClim2. It can be used for various climate application (ns, including estimating the 

individual and combined impacts of different factors on past, present, and future climate change (Ziehn et 

al. 2020). Moreover, ACCESS-ESM1.5’s distinctiveness lies in its status as (to this researcher’s knowledge) 

the only CMIP6 model with terrestrial phosphorus limitation (Ziehn et al. 2020). Studies have shown that 

climate model outputs often contain biases; therefore, it is strongly recommended to apply bias correction 

to GCMs and regional climate model (RCM) outputs before using them in hydrological models (Willkofer 

et al. 2018; Hrour et al. 2023). Climate model data for hydrologic modeling (CMhyd) is a Python-based 

tool that facilitates the use of global and regional climate data in hydrological simulations by applying both 

spatial and temporal bias correction techniques. In this study, monthly rainfall, as well as maximum and 

minimum temperature data, were extracted at a spatial resolution of 30 arc-seconds for the four 

meteorological stations. The data included both historical (1992-2001) observations and future climate 

projections under the SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios from the ACCESS-ESM1.5 

model, using ArcGIS 10.5. These datasets were then bias corrected using the CMhyd tool. The CMhyd 

model was applied to correct biases in maximum and minimum temperature, as well as average monthly 

rainfall data. Previous studies have compared various bias correction techniques to determine the most 

suitable method (Hrour et al. 2023). In this study, both the linear and delta methods were tested. The delta 

method performed poorly for rainfall data at the Tuy Hoa station; therefore, the linear method was 

selected for bias correction in this analysis. 

2.5. Hydrological model  

The SWAT model was used to evaluate the impact of climate change on the runoff in the study basin. The 

version used in this study was ArcSWAT 2012.10-5.24. The SWAT model requires data for meteorological 

(daily rainfall, humidity, temperature, wind speed, and solar radiation) and spatial (digital elevation model, 

land use, and soil maps) variables. It is common that a lack of meteorological and hydrological 

measurement networks, or only very recent measurements, has led to limited or absent data in many river 

basins, including in Vietnam. In this study, we use meteorological data from the four observation stations 

in the Ba River basin. 
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Spatial data were collected from various sources and configured to meet the requirements of the SWAT 

model. A digital elevation model (DEM) with a resolution of 30 m was collected from the ASTER Global 

Digital Elevation Map data source, which can be downloaded at no cost from 

http://asterweb.jpl.nasa.gov/gdem.asp, and extracted into the study basin (Fig. 1). The study also used 

a land-cover map with a resolution of 300 m from the Climate Change Initiative Land Cover team at the 

Université Catholique de Louvain (CCI 2017). The maps employ a legend based on the FAO/UNEP 

Land Cover Classification System to be compatible with previous products (Fig. 2a). This legend is 

converted to types of land-cover classes, which are similar to SWAT’s classification. A soil map with scale 

1:5,000,000, produced by the United Nations Food and Agriculture Organization (Fig. 2b), was used in 

this study (FAO 2003). The database used for this soil map in SWAT was taken from MWSWAT2012. 

To our knowledge, this is the first time that the ASTER-CCI-FAO spatial input dataset has been 

configured for a tropical basin in the SWAT model. 

(a) (b)  

Fig. 2. Maps of land cover for 1998 (a) and soil classification (b) in the Ba River basin. 

Direct measurement of evapotranspiration (ETo) is often difficult, time-consuming, and costly. 

Consequently, ETo is commonly estimated using climatic variables such as humidity, temperature, wind 

speed, and solar radiation. In the SWAT model, various methods are employed for this estimation: The 

Hargreaves (HG) method, which is temperature-based; the Priestley-Taylor (P-T) method, which is 

radiation-based; and the Penman-Monteith (P-M) method, which combines various factors. In this study, 

we used meteorological data from the four stations An Khe, AyunPa, MDrak, and Tuy Hoa (Fig. 1) to 

estimate ETo using the Penman-Monteith method. 

Because hydropower plants in the basin proliferated rapidly after 2001, to simulate the change in natural 

discharge, the study used monitoring data at the Cung Son station from 1992-2001. River discharge data 

from the period 1992-1996 were used to calibrate the model, data from 1997-2001 to validate it. Because 
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the reservoir system began operating in the Ba River basin in 2002, this study did not use data after 2002 

for calibrating and validating the model.  

2.6. Evaluation of the hydrological model performance 

This study applied the SWAT-Calibration and Uncertainty Programs (SWAT-CUP) program with the 

SUFI2 (Sequential Uncertainty Fitting algorithm) uncertainty analysis procedure (Abbaspour 2015) for 

sensitivity/calibration analysis. The calculated indices were as follows: 

Coefficient of determination (R2): 

𝑅2 =
[∑ (𝑄𝑜𝑏𝑠

𝑖 −𝑄𝑜𝑏𝑠)(𝑄𝑠𝑖𝑚
𝑖 −𝑄𝑠𝑖𝑚)𝑛

𝑖=1 ]
2

∑ (𝑄𝑜𝑏𝑠
𝑖 −𝑄𝑜𝑏𝑠)

2𝑛
𝑖=1

∑ (𝑄𝑠𝑖𝑚
𝑖 −𝑄𝑠𝑖𝑚)

2𝑛
𝑖=1

                         (5) 

Where n is the number of observations, 𝑄𝑜𝑏𝑠
𝑖  is the observation value, 𝑄𝑠𝑖𝑚

𝑖  is the simulation value, and 

𝑄̅𝑜𝑏𝑠 is the average of observation values. 

The Nash-Sutcliffe efficiency (NSE), a normalized statistic, establishes how much residual variation there 

is in relation to the variance of the measured data (Nash, Sutcliffe 1970). An ideal match between the 

simulated and the observed data is indicated by NSE = 1. In contrast, NSE ≤ 0 indicates that the model’s 

simulation is less accurate than the observed mean. 

𝑁𝑆𝐸 = 1 − [∑ (𝑄𝑜𝑏𝑠
𝑖 − 𝑄𝑠𝑖𝑚

𝑖 )
2𝑛

𝑖=1 ]/ [∑ (𝑄𝑜𝑏𝑠
𝑖 − 𝑄̅𝑜𝑏𝑠)

2𝑛
𝑖=1 ]  (6) 

The PBIAS coefficient is expressed by Equation 3: 

𝑃𝐵𝐼𝐴𝑆 = ∑ (𝑄𝑜𝑏𝑠
𝑖 − 𝑄𝑠𝑖𝑚

𝑖 ) × 100𝑛
𝑖=1 / ∑ 𝑄𝑜𝑏𝑠

𝑖𝑛
𝑖=1   (7) 

PBIAS = 0 indicates a correct simulation of the model. PBIAS > 0 indicates that the simulated value is 

lower than the actual value, whereas PBIAS < 0 indicates that the simulated value is higher than the actual 

value (Gupta et al. 1999). 

3. Results and discussion 

3.1. Trend of temperature and rainfall in the tropical basin  

Prior to trend determination, a Durbin-Watson test (Order = 1) was performed to assess the presence of 

autocorrelation. The results indicated that all 20 temperature and precipitation data series yielded p-values 

< 0.0001, confirming that the subsequent trend analysis would not be influenced by autocorrelation. To 

consider climate change in the basin, the study applied the Mann-Kendall test to calculate trends in 

temperature and rainfall parameters. The p-values of average annual and minimum temperature at An Khe 

station, average annual temperature at the AyunPa station, average annual and maximum temperature at 

the MDrak stations, and average annual temperature at the Tuy Hoa station were < 0.05 (Tab. 4)m 
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indicating significant trends. The Tau, S, and Z values of the average annual, maximum, and minimum 

temperature at the four stations were > 0 (Tab. 4). During 1981-2020, temperature either demonstrated a 

statistically significant increasing trend or showed no discernible trend. The annual average temperature 

showed an increasing trend at all four monitoring stations, with relatively small differences in the rate of 

increase. Specifically, the rates of increase in annual average temperature at An Khe, AyunPa, MDrak, and 

Tuy Hoa were 0.25°C, 0.35°C, 0.28°C, and 0.29°C per decade, respectively. 

Table 4. Results of the Mann-Kendall test for trends. TA = average annual temperature, TX = maximum 

temperature, TN = minimum temperature, RA = annual rainfall, RX = maximum 1-day rainfall, Tau = Kendall’s 

Tau, S = Mann-Kendall test statistic, Z = the normalized test statistic, p = probability.  

No Station Parameter Tau S Z p Result 

1 An Khe 

TA 0.424 331 3.845 0.0001 Increasing 

TX 0.072 56 0.641 0.5213 No trend 

TN 0.336 262 3.045 0.0023 Increasing 

RA 0.139 114 1.269 0.2044 No trend 

RX 0.144 112 1.293 0.1959 No trend 

2 AyunPa 

TA 0.572 446 5.201 0 Increasing 

TX 0.046 36 0.408 0.683 No trend 

TN 0.371 289 3.358 0.0008 Increasing 

RA –0.185 –144 –1.666 0.0957 No trend 

RX –0.21 –164 –1.899 0.0575 No trend 

3 MDrak 

TA 0.545 425 4.94 0 Increasing 

TX 0.438 342 3.977 0.0001 Increasing 

TN 0.186 145 1.68 0.093 No trend 

RA 0.149 116 1.34 0.1803 No trend 

RX 0.062 48 0.548 0.584 No trend 

4 Tuy Hoa 

TA 0.595 464 5.395 0 Increasing 

TX 0.121 94 1.086 0.2773 No trend 

TN 0.2 156 1.808 0.0705 No trend 

RA –0.054 –42 –0.478 0.6329 No trend 

RX –0.164 –128 –1.48 0.139 No trend 

The calculated results of Tau, S and Z of the annual rainfall total and maximum 1-day rainfall at two 

stations, An Khe and MDrak, were > 0 while those at the AyunPa and Tuy Hoa stations were < 0. 

However, all parameters also had a p-value > 0.05. The average annual and maximum 1-day rainfall in the 

Ba River basin did not have a significant trend. The results of the Mann-Kendall trend test and the 

homogeneity test identified a unique trend of increasing average annual temperature at An Khe station. 

The analysis of annual data showed that climate change in tropical river basins is very complex, and it is 

difficult to identify trends. A study on the lower Mekong River (Dang et al. 2020) also showed that during 

the period 1989-2017, rainfall exhibited complex fluctuations, and the impact of southern oscillation 

(ENSO) processes on rainfall was very strong. Analysis of precipitation records indicates a pronounced 

influence of large-scale climatic oscillations on rainfall distribution within the basin. During El Niño years, 

exemplified by 1997, annual precipitation was markedly below the multi-year climatological mean. 
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Specifically, in 1997, the mean annual rainfall at the An Khe, AyunPa, MDrak, and Tuy Hoa 

meteorological stations was 1100, 1271, 1270, and 1769 mm, respectively. In contrast, La Niña years, such 

as 1999, were associated with substantially above-average precipitation. In that year, total annual rainfall 

reached 1889.1 mm at An Khe, 1720.5 mm at AyunPa, 3259.8 mm at MDrak, and 2771.1 mm at Tuy Hoa, 

reflecting the strong positive phase of the El Niño-ENSO impact on regional hydrometeorological 

conditions. Therefore, based on the characteristics of water use in the Ba River basin, the study selected 

the period 1981-2000 as the baseline for comparative calculations. 

(a) (b)  

(c) (d)  

Fig. 3. Monthly average, maximum, and minimum air temperatures for the periods 1981-2000 and 2001-2020 at (a) 

the An Khe, (b) AyunPa, (c) MDrak and (d) Tuy Hoa stations. 

The average monthly air temperatures at all meteorological stations during the period 2001-2020 were 

higher than those in the 1981-2000 baseline period (Fig. 3). The average annual temperatures during the 

baseline period were 23.5°C at the An Khe station, 25.6°C at the AyunPa station, 23.7°C at the MDrak 

station, and 26.6°C at the Tuy Hoa station. In comparison, during the period 2001-2020, these values 

increased to 23.9°C, 26.3°C, 24.4°C, and 27.1°C, respectively. 

Rainfall also differed between the two periods, 1981-2000 and 2001-2020, across the meteorological 

stations. Monthly rainfall for both periods at the four stations is illustrated in Figure 4. During the baseline 

period 1981-2000, the average annual rainfall was 1509 mm at the An Khe station, 1349 mm at the 

AyunPa station, 2057 mm at the MDrak station, and 2149 mm at the Tuy Hoa station. For the period 

2001-2020, these values were 1767, 1148, 2150, and 1955 mm, respectively. Comparing the two periods 

before and after 2000, rainfall tended to increase at stations situated in high-altitude areas (above 400 m 

asl), such as An Khe and MDrak, whereas it tended to decrease at stations located in lower-altitude areas 
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(below 160 m asl), such as AyunPa and Tuy Hoa. The duration of the rainy season varies across the basin. 

In the upper basin, it typically extends from May to December, contributing more than 90% of the annual 

rainfall. In contrast, the rainy season in the downstream areas lasts from September to December, 

accounting for less than 80% of the annual total. The concentration of high rainfall in just four months in 

the downstream region presents challenges for freshwater availability in tropical river basins in  general, 

and particularly in the Ba River basin.  

(a)  (b)  

(c)   (d)  

Fig. 4. Monthly average and maximum 1-day rainfall for 1981-2000 and 2001-2020 at (a) the An Khe, (b) AyunPa, (c) 

MDrak, and (d) Tuy Hoa stations. 

3.2. Trend of runoff in the tropical basin 

Before assessing discharge trends, a Durbin-Watson test (order = 1) was applied to detect potential 

autocorrelation. All 10 discharge time series produced p-values < 0.0001, thereby confirming that 

autocorrelation would not influence the subsequent trend analysis. To identify the runoff trend in the 

basin, the study applied the Mann-Kendall test to estimate trends in runoff parameters (Tab. 5). Values 

of Tau, S, and Z of almost all parameters (except minimum discharge) at the An Khe station were < 0 

(Tab. 5). However, only the p-value of minimum discharge at the Cung Son station was <0.05. Other 

parameters of runoff in the Ba River basin did not have significant trends. Based on the Mann-Kendall 

trend test and the homogeneity test, no trend was identified at any station in the Ba River basin. Similar to 

climatic factors, runoff data calculations show that runoff in tropical river basins is very complex, making 

it difficult to determine trends. In 1997, streamflow at hydrological stations within the Ba River basin 

reached exceptionally low levels, with values of 19.65 m³/s at the An Khe station and 201.3 m³/s at the 

Cung Son station. In contrast, in 1999, streamflow was considerably higher, measuring 46.0 m³/s at An 

Khe and 459.5 m³/s at Cung Son. 
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Table 5. Calculated results by the Mann-Kendall test. Qy = average annual discharge, Qf = discharge in flood 

season, Qd = discharge in low-flow season, Qx = maximum discharge, Qn = minimum discharge, Tau = 

Kendall’s Tau, S = Mann-Kendall test statistic, Z = the normalized test statistic, and p = probability. 

No Station Parameter Tau S Z p Result 

1 An Khe 

Qy –0.038 –30 –0.338 0.736 No trend 

Qf –0.131 –102 –1.177 0.239 No trend 

Qd –0.005 –4 –0.035 0.972 No trend 

Qx –0.182 –142 –1.643 0.100 No trend 

Qn 0.154 120 1.387 0.166 No trend 

2 Cung Son 

Qy –0.115 –90 –1.037 0.300 No trend 

Qf –0.118 –92 –1.06 0.289 No trend 

Qd –0.074 –58 –0.664 0.507 No trend 

Qx –0.086 –67 –0.769 0.442 No trend 

Qn –0.496 –387 –4.498 0.000 Decreasing 

Monthly, maximum, and minimum discharge values for 1981-2000 and 2001-2020 at two stations in the 

Ba River basin are illustrated in Figure 5. In contrast to the complex fluctuations in rainfall, runoff showed 

a decreasing trend between the two periods. Specifically, the observed discharge at the An Khe station 

declined by 13.8%, while that at the Cung Son station decreased by 17.6%. 

(a)  (b)  

Fig. 5. Monthly average, maximum, and minimum discharges for 1981-2000 and 2001-2020 at (a) the An Khe and (b) 

Cung Son stations. 

Between the two periods, 1981-2000 and 2001-2020, flood season water volume decreased by 20.7% at 

the An Khe station and 19.8% at the Cung Son station. In contrast, the water volume during the low-flow 

season increased by 2% at the An Khe station but decreased by 11.6% at the Cung Son station. At the An 

Khe station, the maximum discharge during 1981-2000 and 2001-2020 was 2440 m³/s and 3060 m³/s, 

respectively, while the minimum discharge was 0.295 m³/s and 0.1 m³/s. At the Cung Son station, the 

maximum discharge during 1981-2000 and 2001-2020 was 20,700 m³/s and 13,500 m³/s, respectively, 

while the minimum discharge was 7.73 m³/s and 1.41 m³/s. The distribution of water resources between 

the flood and low-flow seasons is greatly imbalanced in tropical river basins – a characteristic feature of 

these regions that also complicates water resource management. Therefore, it is essential to consider 

seasonal flow variations when planning and regulating water use in tropical river basins.  
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3.3. Climate change scenarios 

Future climate data were extracted from the ACCESS-ESM1.5 model under four scenarios: SSP1-2.6 

(sustainability), SSP2-4.5 (middle of the road), SSP3-7.0 (regional rivalry), and SSP5-8.5 (fossil-fueled 

development), corresponding to the time periods 2021-2040, 2041-2060, 2061-2080, and 2081-2100. The 

data were extracted at a high spatial resolution of 30 arc-seconds for the four meteorological stations in 

the Ba River basin using ArcGIS 10.5 software. 

The extracted datasets included maximum and minimum temperatures as well as average monthly rainfall 

for each scenario and time period. For bias correction by CMHyd, historical climate data from the 

period 1992-2001 were also extracted and used as the reference baseline at the four meteorological 

stations. 
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Fig. 6. Projected maximum and minimum temperatures for the periods 2021-2040, 2041-2060, 2061-2080 and 2081-

2100 under the four scenarios of SSP1-2.6, 2-4.5, 3-7.0, and 5-8.5 at (a) the An Khe, (b) AyunPa, (c) MDrak, and (d) 

Tuy Hoa stations with bias correction. 

The results after bias correction, illustrated in Figures 6 and 7, were used as input data for the SWAT 

model to simulate discharge in the Ba River basin. Changes in maximum and minimum temperatures and 

annual average rainfall during the periods 2021-2040, 2041-2060, 2061-2080, and 2081-2100 under the 
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SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, in comparison with the baseline period 1981-2000, 

are presented in Table 6. 
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(a) (b) (c) (d) 

Fig. 7. Projected monthly rainfall for the periods 2021-2040, 2041-2060, 2061-2080, and 2081-2100 under the four 

scenarios of SSP1-2.6, 2-4.5, 3-7.0, and 5-8.5 at (a) the An Khe, (b) AyunPa, (c) MDrak, and (d) Tuy Hoa stations 

with bias correction. 

Rainfall and temperature data were bias corrected to match the observed data during the reference period. 

The range of maximum temperature variation was from –6.5°C to +6.0°C without bias correction, and 

from –1.8°C to +12.7°C with bias correction. For minimum temperature, the range was from –4.3°C to 

+14°C without correction, and from –3.5°C to +7.3°C with correction. For rainfall, the range was from –

43% to +7.9% without correction, and from –20.6% to +25.2% with correction. Linear scaling was 

applied for the bias correction. The results after bias correction show that the maximum temperature 

increased at all stations, except for the period 2021-2040 under the SSP2-4.5 scenario at the AyunPa 

station, and for the period 2041-2060 under the SSP1-2.6 and SSP5-8.5 scenarios at the Tuy Hoa station 

(Tab. 6). The minimum temperature in the four periods under the four climate change scenarios showed 

periods of both increase and decrease compared to the baseline period. Typically, high-emission scenarios 

(SSP3-7.0 and SSP5-8.5) exhibit higher maximum and minimum temperatures than low-emission 

scenarios (SSP1-2.6 and SSP2-4.5). The annual average rainfall increased at two stations in the upper basin 

and decreased at two stations in the lower basin during all four periods under the four climate change 
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scenarios. The high-emission scenario (SSP5-8.5) tended to show a smaller increase in rainfall compared 

to the low-emission scenario (SSP1-2.6). 

Table 6. Changes in maximum and minimum temperature (°C) and annual average rainfall (%) compared to the 

period 1981-2000 with bias correction. 

S
ta

ti
o
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Period 

∆Tmax (oC) ∆Tmin (oC) ∆Annual rainfall (%) 

SSP 

1-2.6 

SSP 

2-4.5 

SSP 

3-7.0 

SSP 

5-8.5 

SSP 

1-2.6 

SSP 

2-4.5 

SSP 

3-7.0 

SSP 

5-8.5 

SSP 

1-2.6 

SSP 

2-4.5 

SSP 

3-7.0 

SSP 

5-8.5 

A
n
 K

h
e 

2021-2040 +4.2 +4.1 +4.3 +4.5 +3.8 +6.9 +3.6 +3.8 +3.6 +9.4 –2.2 +1.6 

2041-2060 +0.7 +1.1 +1.3 +1.3 +6.9 +6.9 +6.9 +7.2 +4.7 –0.4 –4.4 –4.4 

2061-2080 +2.8 +3.5 +4.0 +4.3 +4.7 +4.8 +5.5 +5.9 +3.9 –0.6 –0.6 –4.4 

2081-2100 +4.6 +5.6 +7.0 +7.5 +1.1 +1.7 +2.8 +3.3 +7.5 +1.7 –6.2 –0.5 

A
yu

n
P

a 

2021-2040 +0.1 –0.1 +0.3 +0.3 +1.5 +1.6 +1.6 +1.8 –7.4 –2.8 –11.9 –9.7 

2041-2060 +0.1 +0.1 +0.8 +4.4 +4.2 +4.5 +7.3 +4.9 –7.1 –11.6 –15.3 –11.8 

2061-2080 +3.1 +3.2 +0.4 +4.4 +0.5 +1.2 +4.5 +4.4 –8.1 –11.9 –17.5 –16.9 

2081-2100 +5.7 +6.0 +8.0 +8.5 –3.5 –2.3 –1.7 –1.2 –6.6 –12.5 –20.6 –16.4 

M
D

ra
k

 

2021-2040 +10.4 +10.3 +10.5 +10.5 +1.7 +1.6 +1.5 +1.7 +16.1 +25.2 +10.3 +15.5 

2041-2060 +6.5 +6.6 +7.1 +9.3 +5.0 +5.1 +5.1 +5.4 +20.3 +11.7 +7.2 +13.7 

2061-2080 +8.4 +8.6 +9.4 +9.8 +2.3 +2.8 +2.9 +3.4 +18.3 +12.6 +12.6 +8.5 

2081-2100 +10.3 +10.3 +12.2 +12.7 –1.3 –0.4 +0.2 +0.8 +21.9 +15.3 +6.3 +14.1 

T
u
y 

H
o
a 

2021-2040 +3.4 +3.3 +3.4 +3.6 –1.5 –1.6 –1.6 –1.4 +10.6 +21.9 +4.7 +9.9 

2041-2060 –0.2 +0.1 +0.3 –1.8 +2.9 +2.9 +3.0 +3.3 +12.8 +6.2 +2.3 +8.2 

2061-2080 +1.6 +1.9 +2.5 +3.8 +0.9 +1.3 +1.6 +2.0 +11.8 +7.5 +7.5 +4.4 

2081-2100 +3.0 +3.6 +5.1 +5.6 –1.8 –1.1 –0.4 +0.1 +14.9 +9.0 +2.8 +9.9 

3.4. Impact of climate change on runoff 

Based on the results extracted from the ACCESS-ESM1.5 model, this study applied the SWAT model to 

simulate the monthly water discharge. The calibration results for the period 1992-1996 at the Cung Son 

station showed R², NSE and PBIAS indices of 0.90, 0.90, and –0.8%, respectively. The validation results 

for the period 1997-2001 at the Cung Son station showed R², NSE and PBIAS indices of 0.89, 0.88, and 

2.6%, respectively. To assess the sensitivities of the parameters, the SUFI-2 method from SWAT-CUP 

was applied, resulting in the identification of the seven most sensitive parameters. A total of 1000 

simulations was performed to optimize the model outputs. A list of the sensitive parameters is provided in  

Table 7. The uncertainty in the simulation results may stem from the sparse distribution of meteorological 

stations within the basin, with only four stations covering an area of 13,848 km 2. 

Moreover, these stations are positioned at locations that do not adequately represent the geographical 

characteristics of the basin. The average elevation of the basin is 469 m asl (ranging from 0 to 1983 m asl). 

The stations were located lower than the average basin elevation. However, the calibration and validation 

results indicated that the SWAT model could effectively simulate flow in the Ba River basin. The SWAT 

model has been used successfully for hydrological assessments of water resource management, even in 

cases of data scarcity, such as in the Brahmaputra River basin (Dutta, Sarma 2021). 
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Table 7. List of sensitive parameters used for model calibration. 

Parameters 
Fitted_ 
Value 

Min_ 
Value 

Max_ 
Value 

p 
value 

CN2 – SCS runoff curve number 0.23 –20 20 0 

ALPHA_BF – Baseflow alpha factor (day) 0.479 0 1 0.0366 

GW_DELAY – Groundwater delay (days) 277.485 30 450 0.006 

GWQMN – Threshold depth of water in the shallow aquifer required for 
return flow to occur (mm) 

471.15 0 5000 0 

SOL_AWC – Available water capacity of the soil layer 1.004 1 2.5 0.0001 

CH_N2 – Manning’s "n" value for the main channel 0.123318 0.01 0.3 0.0103 

CH_K1 – Effective hydraulic conductivity in tributary channel alluvium 18.375 0 300 0.0079 

These findings further underscore the potential of the SWAT model in tropical basin contexts, despite 

data limitations. Since the model does not include water exploitation in the basin, the simulated discharge 

represents natural flow. This study is the first to use a spatial dataset for the SWAT model, comprising 

DEM data from the ASTER’s web, land cover data from the CCI program, and a soil map from the FAO. 

The calibration and validation results indicate that these data inputs are suitable for use in SWAT models 

for tropical river basins. Therefore, this spatial dataset can support investigations for integrated water 

resource management in river basins that lack sufficient data for calculating water resource allocation. To 

assess the effects of climate change on runoff in the basin, this study considered the existing hydropower 

stations in the basin during the period 2001-2020. The predicted monthly discharge values for the periods 

2021-2040, 2041-2060, 2061-2080, and 2081-2100 under the four scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, 

and SSP5-8.5) are shown in Figure 8. The changes in annual, low-flow season, and flood-season 

discharges for these periods, compared to the baseline period of 1981-2000, are shown in Table 8. Using 

the baseline period of 1981-2000, this study calculated and compared surface runoff changes at 

hydrological stations under climate change scenarios. The predicted annual discharge at the An Khe 

station decreased by 30.2% to 39.0%, the low-flow season discharge decreased by 68.0% to 85.2%, and 

the flood-season discharge decreased by 6.1% to 17.3% compared to the baseline period. At the Cung Son 

station, the predicted annual discharge varied between –4.0% and +15.6% from baseline, with a tendency 

for flood-season discharge to increase by 32.0% to 57.9%, and low-flow season discharge to decrease by  

86.7% to 98.6% compared to the baseline period. 

The predicted discharge in the lower basin exhibited more complex variation than the upper basin. This 

study found that both annual and seasonal discharge trends tended to decrease in the upper area, while in 

the lower basin, the flood season showed an increasing trend, and the low-flow season showed a 

decreasing trend compared to the baseline period. By the end of the 21st century (2081-2100), discharge in 

both the upper and lower areas is predicted to decrease during the low-flow season, indicating that 

tropical river basins, like the Ba River basin, may face significant risks of water shortages during the low-

flow season by the century’s end. The impacts of climate change will significantly affect future water 

resource allocation in such regions. 
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(a) (b) 

Fig. 8. Projected monthly discharge for the periods 2021-2040, 2041-2060, 2061-2080, and 2081-2100 under the four 

scenarios of SSP1-2.6, 2-4.5, 3-7.0, and 5-8.5 at (a) the An Khe and (b) the Cung Son stations. 

Table 8. Changes in annual, flood-season, and low-flow season discharges (%) compared to the period 1981-2000. 

S
ta

ti
o
n

 

Period 

∆Annual discharge (%) ∆Flood-season discharge (%) ∆Low-flow discharge (%) 

SSP SSP SSP SSP SSP SSP SSP SSP SSP SSP SSP SSP 

1-2.6 2-4.5 3-7.0 5-8.5 1-2.6 2-4.5 3-7.0 5-8.5 1-2.6 2-4.5 3-7.0 5-8.5 

A
n
 K

h
e 

2021-2040 –35.8 –30.2 –34.7 –30.6 –14.2 –6.1 –16.9 –10.5 –76.2 –75.2 –68.0 –68.1 

2041-2060 –34.1 –39.0 –37.7 –37.5 –10.9 –17.3 –17.0 –12.8 –77.5 –79.6 –76.4 –83.8 

2061-2080 –35.1 –38.7 –33.7 –38.2 –11.7 –16.1 –11.6 –13.2 –78.9 –81.0 –75.0 –84.8 

2081-2100 –30.9 –35.4 –38.8 –34.3 –6.6 –11.5 –14.9 –7.1 –76.4 –80.1 –83.5 –85.2 

C
u
n
g 

S
o
n

 2021-2040 +2.2 +15.6 +7.3 +14.7 +40.0 +57.9 +43.1 +53.4 –97.0 –95.4 –86.7 –86.9 

2041-2060 +7.4 -4.0 +1.7 +8.6 +47.0 +32.0 +38.6 +48.4 –96.6 –98.6 –94.9 –95.9 

2061-2080 +5.6 –2.6 +6.9 +1.6 +45.2 +34.0 +46.8 +39.7 –98.3 –98.6 –97.6 –98.4 

2081-2100 +11.7 +1.7 –1.4 +9.4 +53.5 +39.9 +35.6 +50.5 –98.1 –98.6 –98.5 –98.4 

Several studies have examined the impacts of climate change on river flow in various watersheds globally; 

however, research on the effects of climate change specifically during low-flow seasons remains limited. In 

123



the Meuse Basin in Northwest Europe, for instance, climate change is projected to reduce discharge 

during the low-flow season (de Wit et al. 2007). As discussed earlier, the low-flow season in tropical river 

basins typically lasts twice as long as the flood season, yet the water volume during this period accounts 

for less than half of the flood season’s discharge. If the water volume during the low-flow season 

continues to decrease, it will present numerous challenges for water use within the basin. Under high-

emission scenarios, by the end of the 21st century, the volume of water in the low-flow season is expected 

to decrease even further. This suggests that meteorological and hydrological factors are not only highly 

variable seasonally but also fluctuate significantly over time. The irregular distribution of rainfall and 

runoff presents considerable challenges for water resource management in tropical river basins. The 

results from this study provided a scientific basis for developing water use plans in order of priority for 

tropical river basins. 

4. Conclusions 

The research results indicate that climatic factors, such as temperature and rainfall, along with runoff in 

tropical river basins, exhibit complex variations. Ten out of 30 hydrometeorological data series for the 

period 1981-2020 were found to be heterogeneous. An increasing trend was identified only in the annual 

average temperature data series for all four meteorological stations. Projected variations in maximum and 

minimum temperatures were found to be complex, with predicted annual rainfall decreasing in the upper 

basin and increasing in the lower basin toward the end of the century under SSP climate change scenarios. 

The spatial dataset, including DEM (ASTER30), land cover (CCI), soil (FAO), and data from four 

meteorological stations, was constructed for the SWAT model. The calibration and validation results 

confirmed that the SWAT model and the input dataset construction methods are suitable for tropical river 

basins. The study also successfully integrated the land cover map (CCI) and the soil map (FAO) into the 

SWAT model using appropriate conversion methods. The results indicate a projected decrease in 

discharge during the low-flow season, signaling a worsening of water shortages in the Ba River Basin. 

These findings are particularly significant, as the observed trends suggest a future decline in surface water 

resources during the dry season in an area already experiencing water stress, underscoring the urgent need 

for a robust adaptation strategy supported by reliable drought monitoring and forecasting systems . 

This study has developed a framework for evaluating climate change impacts on water resources in 

tropical basins with sparse observational data. Although the results are valuable, the accuracy of the 

simulations could be improved with a denser observational network. The study relied on projections from 

a single GCM; future research should explore multi-model ensembles to enhance the robustness of 

climate change impact assessments in tropical river basins.  
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