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Abstract 

This study investigates the influence of different atmospheric circulation types on wind energy production in Poland from 194 8 to 

2019. By utilizing the ERA5 reanalysis dataset, which provides detailed atmospheric and surface parameters, and the Litynski 

calendar of circulation types, this research is directed toward understanding how various circulation patterns affect wind energy 

generation. The study specifically focuses on periods of energy droughts (days with very low wind energy production) and energy 

floods (days with very high wind energy production). The analysis reveals trends, along with annual and seasonal variations in the 

frequency of energy droughts and floods. Over the period of study, the number of drought days varied from 51 to 108 per year, 

while the number of flood days varied from 44 to 97 per year. Cyclonic circulation types with NW winds are found to be the most 

favorable for wind energy production, leading to higher daily energy generation. Conversely, anticyclonic circulation types with 

winds from the north, northeast, and east are more likely to result in energy droughts. Certain seasons exhibit higher variability in 

the number of drought and flood days, influenced by the prevailing circulation types. The standard deviation of the number of 

drought days in summer is 7.3 compared to 4.8 in spring; for flood days the standard deviation for winter is 8.4 and for summer 

only 3.4. 
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1. Introduction 

Renewable energy sources are becoming increasingly important in the global effort to mitigate climate 

change (Moomaw et al. 2012). The shift toward renewables, such as solar and wind energy, is driven by 

the need to reduce greenhouse gas emissions and dependency on fossil fuels. However, the variability of 

these energy sources poses challenges for energy systems, particularly in ensuring consistent energy supply 

(Pryor et al. 2005; Harrison, Wallace 2006; Jerez et al. 2015). The impact of climate change on weather 

patterns further complicates the matter, potentially exacerbating periods of energy surplus and deficit. 

In Poland, the adoption of photovoltaic (PV) systems has seen significant growth in recent years, 

supported by favorable policies and technological advances (Igliński et al. 2023). Conversely, onshore 

wind turbines experienced a decline in new investments as the result of regulatory and market challenges. 

However, the situation is likely to improve in response to new regulations concerning the siting of wind 

parks relative to human settlements. 

The reliability and safety of the energy system are critical concerns, particularly in the face of energy 

droughts (periods of very low energy production) and energy floods (periods of very high energy 
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production). These extremes are often influenced by weather conditions, which can lead to significant 

fluctuations in renewable energy output. Understanding these patterns is essential for developing strategies 

to stabilize the energy grid and ensure a reliable energy supply. 

Circulation-type calendars, such as the Litynski classification developed for the territory of Poland, as well 

as the Grosswetterlagen classification focused on Central Europe (particularly Germany), classify 

atmospheric circulation patterns and their impacts on weather. These classifications are critical for 

understanding weather variability and its implications for various environmental and climatic studies  

(Ustrnul et al. 2010, 2013; Wypych et al. 2014; Ustrnul et al. 2015; Wypych et al. 2017). The Litynski 

calendar, developed by Jan Litynski in 1969, categorizes 27 types of atmospheric circulation based on sea 

level pressure over Central Europe (Lityński 1969). Similarly, the Grosswetterlagen classification (initially 

named the Hess-Brezowsky classification), first published in 1952, provides a framework for analyzing 

synoptic weather patterns over Central Europe and their long-term climatic impacts (Hess, Brezowsky 

1952). The COST733 project further harmonized these classifications across Europe, facilitating the 

comparison of various methods and their applications in climate research (e.g., Huth et al. 2008; 

Niedzwiedź, Lupikasza 2019; Niedźwiedź, Ustrnul 2021). 

Circulation types play a pivotal role in determining the availability of renewable energy resources  (Correira 

et al. 2017; Grams et al. 2017). Different atmospheric circulation patterns can lead to variations in wind 

speed and solar irradiance, directly affecting the performance of wind turbines and PV systems. By 

analyzing these weather types, it is possible to predict periods of low and high energy production, enabling 

better planning and management of energy resources. Van der Wiel et al. (2019) investigated the impact of 

large-scale weather regimes on renewable energy production and energy demand in Europe. Their findings 

indicate that certain weather regimes, such as 'Scandinavian blocking' and 'North Atlantic oscillation 

negative', lead to lower renewable energy production and higher energy demand, increasing the risk of 

energy shortfalls. Similarly, Dumas et al. (2019) assessed the vulnerability of electrical grid components to 

extreme weather events, emphasizing the need for resilient energy systems capable of adapting to these 

challenges (Dumas et al. 2019; Van der Wiel et al. 2019). Moreover, Gonçalves et al. (2024) and Muyuan et 

al. (2023) examined the variability in wind and solar energy production under different weather regimes. 

They highlighted the complexity of predicting energy shortfalls based solely on large-scale weather 

patterns and underscored the importance of accurate weather prediction models for effective energy 

planning and management. 

Understanding the relationship between weather patterns and renewable energy production has significant 

implications for energy policy and management (del Rio et al. 2018). It can inform the development of 

policies that support the integration of renewable energy into the grid, enhance predictive maintenance of 

energy infrastructure, and improve the design of energy storage systems to buffer against production 

variability (Brown, Reichenberg 2021).  
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With these considerations,  the main goal of this study is to evaluate the relationship between different 

weather circulation types in Poland and the occurrence of periods with very low (droughts) and very high 

(floods) production of wind energy. By establishing this relationship, the study is directed toward 

providing insights into the impacts of weather patterns on renewable energy production, thereby 

contributing to more resilient and adaptive energy systems. 

2. Material and methods 

The primary data source for this study is the ERA5 reanalysis dataset, which provides a comprehensive set 

of atmospheric and surface parameters at high spatial and temporal resolution (Hersbach et al. 2020). 

Specifically, we utilized the u and v wind components, temperature, and specific humidity data from the 

133rd model level, which is the closest to 100 m above ground level (agl) in the ERA5 model. 

Additionally, surface-level air pressure data were extracted to facilitate further calculations. 

Wind speed at the height of 100 m agl was adjusted for variations in air density, which can significantly 

affect the actual wind speed experienced by wind turbines (Hoxha et al. 2023). The steps and formulas are 

specified in the supplementary materials. For computations of power generation with specific wind speed, 

a 3.5 MW wind turbine was used (https://en.wind-turbine-models.com/turbines/1247-vestas-v112-3.45, 

data access 2024.07.01). 

To accurately assess wind energy production across Poland, the locations of wind turbines were extracted 

from OpenStreetMap (OSM, https://www.openstreetmap.org, data access 2024.07.01). The final database 

consisted of 4949 wind turbines (Fig. 1a) with simulated yearly wind energy production (Fig. 1b). Using 

these coordinates, the potential power generated at each turbine site was calculated by applying wind 

speed data from the ERA5 reanalysis dataset nearest point. The wind speed values, adjusted for air 

density, were used to estimate the power output based on the specific power curve of the wind turbines  

(Jurasz et al. 2024). 

The Litynski calendar of circulation types was used to categorize atmospheric circulation patterns affecting 

Poland (Lityński 1969; Pianko-Kluczyńska 2007; Nowosad 2008; Kulesza 2017). This calendar classifies 

circulation types based on synoptic situations. By linking these circulation types to wind speed and energy 

production data, we analyzed how different atmospheric patterns impact wind energy generation. This 

classification helps in understanding the variability of wind energy production in relation to  prevalent 

weather conditions. 

The frequency of energy droughts and floods using specific thresholds was calculated  to analyze the 

impact of circulation types on renewable energy production. Droughts were defined as days when energy 

production fell below the 20th percentile, and floods as days when production exceeded the 80th 

percentile. Using R, occurrences of droughts and floods were classified and their frequencies for each 

circulation type were computed. This was achieved using the dplyr (Wickham, Francois 2014) and ggplot2 

(Wickham 2016) libraries, which facilitated the analysis and visualization of trends and seasonal variations. 
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Fig. 1. Locations of OSM turbines (a) and simulated yearly wind energy production from OSM turbines in Poland 

(b). 

3. Results 

3.1. Trends in energy droughts and floods 

Figure 2 shows the annual trend in drought days from 1948 to 2019, indicating variability with some 

noticeable peaks and dips. Notably, there are several years with a high number of drought days, such as 

from the early 1960s to the early 1970s and from the 2000s until the end of the period, with peak counts 

reaching 108 days in 1974. Conversely, there are periods with fewer drought days, particularly in the 

1950s, 1970, and 1990s, with counts dropping to 51 days in 1958. Despite this variability, the overall trend 

shows a slight increase, but this trend is not statistically significant (p-value 0.54). 
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Fig. 2. Trends in annual number of days with energy droughts. Periods with high or low numbers of drought days are 

highlighted with red or blue shapes, respectively. 

Similarly, the annual trend in flood days over the same period shows significant fluctuations (Fig. 3). High 

flood day counts are observed from the 1980s to the 1990s, with peaks reaching 97 days in 1983 and 1991. 

On the other hand, the number of flood days decreased in the early 1970s and early 2000s, with counts 

dropping to 44 days in 2002. The overall trend indicates a slight decrease in flood days, yet this trend is 

also not statistically significant (p-value 0.48). 

 

Fig. 3. Trends in annual number of days with energy floods. 
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The seasonal trends in drought days reveal distinct patterns across different seasons (Fig. 4). The number 

of drought days in autumn fluctuates between 10 and 35, with occasional peaks above 30, particularly in 

the 1960s. The overall trend is relatively stable, with a slight increase that is not statistically significant. 

Drought days in spring range from 5 to 25, showing a general decrease over time. Peaks are observed in 

the late 1950s, 1960s, and mid-1970s, but the trend is not statistically significant. Summer exhibits the 

highest variability, with drought days ranging from 20 to 50. Notable peaks occur in the early 1960s and 

mid-2000s. The overall trend shows a slight decrease, but this is not statistically significant. Winter 

drought days vary from 5 to 25, with peaks in the 1950s, early 1970s, 1980s, and 2000s. The overall trend 

remains stable with no significant changes. 

 

Fig. 4. Trends in annual number of days with energy droughts in seasons with different ranges on the y-axis to 

highlight seasonal variability. 

Flood days in autumn (Fig. 5) fluctuate between 10 and 35, with noticeable peaks in the 1950s, 1970s, and 

1990s. The overall trend is stable with a slight decrease, not statistically significant. In spring, flood days 

vary from 5 to 25, showing a general decrease over time, with peaks in the 1960s, early 1980s, and 1990s. 

The trend is not statistically significant. In summer, flood days range from 0 to 15, with high variability 

and peaks in the early 1970s and late 1990s. The overall trend shows a slight decrease, which is not 

statistically significant. In 2003, there were no flood days. Winter was the most variable season, with flood 

days ranging from 10 to 50 and noticeable peaks in the late 1980s and mid-1990s. The overall trend 

remains stable, without significant changes. 

6



 

Fig. 5. Trends in annual number of days with energy floods in seasons with different ranges on the y-axis to highlight 

seasonal variability. 

3.2. Circulation types 

The frequency of different atmospheric circulation types varies significantly in Poland, influencing the 

country's weather patterns over time. Figure 6 shows the frequency of these circulation types from 1948 to 

2019, highlighting the distribution and dominance of specific types throughout this period. Circulation 

types are categorized along the x-axis, with their corresponding frequencies on the y-axis. The bar chart is 

color-coded to differentiate between the various circulation types. The grey bars represent circulation 

types without significant cyclonic or anticyclonic dominance (neutral pressure pattern), blue anticyclonic, 

and red cyclonic types, showing distinct variations in their occurrences. Notably, certain types, particularly 

those represented by the blue (E, N and NE winds) and red bars (SW and NW winds), appear more 

frequently than others. 

Figure 7 presents the frequencies of circulation types in different seasons of the year. In autumn, the most 

dominant are cyclonic types with SW and NW winds; in spring, anticyclonic types with NE and N winds; 

in summer, anticyclonic types with NE and N winds; and in winter, cyclonic types with SW winds.  

Having assigned circulation types for all days in this database, for days with a given circulation type, the 

mean daily sum of wind energy that could be produced by all wind turbines in Poland was calculated. 

Figure 8 shows that the highest values of daily wind energy are expected on days with anticyclonic 

circulation types and NW winds, while the lowest values are for anticyclonic types with no advection. 
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Fig. 6. Frequency of circulation types 1948-2019. 

 

Fig. 7. Frequency of circulation types by season. 
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Fig. 8. Mean daily sum of wind energy production for days with different circulation types. 

As defined in Section 2, the frequency of energy droughts (Fig. 9) and floods (Fig. 10) were calculated for 

circulation types in Poland. While cyclonic types with N, NE, and E winds and without advection are the 

most likely associated with energy droughts, anticyclonic types with NW and SW winds are strongly 

connected to the energy of floods. Days with cyclonic types with SE winds are responsible for the least 

number of droughts and the greatest number of floods. 

Figures 11 and 12 present the frequencies of drought and flood days by season. Droughts are least 

common in winter and autumn. Usually, anticyclonic circulation types are responsible for the largest 

number of droughts, which are mostly visible in summer and spring. On the other hand, floods are 

seldom seen in summer, mostly associated with cyclonic circulation types.  

 

Fig. 9. Frequency of days with energy droughts for circulation types. 
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Fig. 10. Frequency of days with energy floods for circulation types. 

 

Fig. 11. Frequency of days with energy droughts for circulation types by season. 

 

Fig. 12. Frequency of days with energy floods for circulation types by season. 
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4. Discussion 

The findings of this study underscore the significant impacts of atmospheric circulation types on wind 

energy production in Poland. Analysis of data from 1948 to 2019 reveals that specific circulation types are 

related to very low (energy droughts) and very high (energy floods) wind energy production. These 

insights are critical for improving the reliability and resilience of renewable energy systems. 

The results indicate that cyclonic circulation types, particularly those with NW winds, are most conducive 

to high wind energy production. These patterns tend to create stable, strong wind conditions that are ideal 

for wind turbines. Conversely, anticyclonic circulation types, especially with N, NE, and E winds, are 

more likely to result in less favorable wind conditions conducive to energy droughts. This understanding 

can help in forecasting and managing wind energy production more effectively. 

The study highlights distinct seasonal variations in wind energy production. For instance, summer and 

spring exhibit higher variability in energy production, with anticyclonic types leading to more stable 

conditions in summer, whereas winter and autumn show more consistent patterns with cyclonic types. 

This seasonal insight is crucial for planning energy storage and distribution, ensuring that energy supply 

can meet demand throughout the year. 

The ability to predict periods of energy surplus and deficit based on atmospheric circulation types has 

profound implications for energy policy and management. Policymakers can use these findings to develop 

strategies that enhance the integration of renewable energy into the national grid. For example, during 

anticipated periods of energy drought, alternative energy sources or stored energy can be used to maintain 

a stable supply. Similarly, during energy floods, excess energy can be stored or redistributed  to avoid 

curtailment. 

Understanding the relationship between weather patterns and wind energy production can help in 

designing more robust energy systems. By anticipating periods of low and high production, energy 

providers can better manage grid stability, e.g., by optimizing the use of energy storage systems, improving 

the maintenance schedules of wind turbines, and ensuring that the energy grid can handle fluctuations in 

energy production without compromising reliability. 

This study, while comprehensive, has several limitations. The use of the ERA5 reanalysis dataset provides 

a high level of detail, but real-world factors such as turbine maintenance, operational efficiency, and local 

topography were not fully accounted for. Additionally, while the Litynski calendar of circulation types 

offers a robust framework for categorizing weather patterns, future research could benefit from 

incorporating more localized meteorological data and advanced predictive models. This research also has 

employed a simplified approach, assuming that all wind turbines have the same power and height, which is 

not the case in reality, although there are not sufficient data to examine the question in greater detail. 

Further research is needed to explore the long-term impacts of climate change on these atmospheric 

circulation patterns and their subsequent effects on wind energy production. Understanding how these 
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patterns might shift in the future will be crucial for developing adaptive strategies that ensure the 

continued growth and stability of renewable energy systems in Poland. 

5. Conclusion 

This study provides insights into the relationship between atmospheric circulation types and wind energy 

production in Poland. By identifying the weather patterns that lead to energy droughts and floods, this 

research contributes to the development of more resilient and adaptive energy systems. These findings are 

essential for policymakers and energy planners aiming to enhance the reliability and efficiency of 

renewable energy sources, ultimately supporting the transition to a sustainable energy future. 

The authors also see the rationale for using other classifications of circulation types, including those based 

on automated methods (e.g., using machine learning techniques), to assess their impact on electricity 

production. It is necessary to examine to what extent the application of mesoscale classifications will allow 

for an even better determination of the influence of circulation conditions on anemological conditions.  
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Appendix 

#!/usr/bin/env python 

import cdsapi 

import time 

import eccodes 

import numpy as np 

import os 

 

def generate_days(last_day): 

    return [f"{day:02}" for day in range(1, last_day + 1)] 

 

def compute_saturation_vapor_pressure(T): 

    """Compute saturation vapor pressure given temperature in Celsius.""" 

    return 6.112 * np.exp(17.67 * T / (T + 243.5)) 

 

def compute_actual_vapor_pressure(q, p): 

    """Compute actual vapor pressure given specific humidity and pressure.""" 

    return q * p / (0.622 + (0.378 * q)) 

 

def compute_relative_humidity(T, q, p): 

    """Compute relative humidity given temperature in Celsius, specific humidity, and pressure."""  

    e_s = compute_saturation_vapor_pressure(T) 

    e = compute_actual_vapor_pressure(q, p) 

    return (e / e_s) * 100 

 

def compute_q_air(t, rh, p): 
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    return (p*100-

rh/100*611*np.exp((17.27*t)/(237.3+t)))/(287.058*(t+273.15))+(rh/100*611*np.exp((17.27*t)/(237.3+t)))/(46

1.495*(t+273.15)) 

 

def compute_ws(u, v, q_air): 

    return np.sqrt(u**2+v**2)*(q_air/1 .225)**(1/3) 

 

c = cdsapi.Client() 

 

def process_grib_file(input_filename1, input_filename2, output_filename): 

    # Open the input grib file 

    with open(input_filename1, 'rb') as fin1, open(input_filename2, 'rb') as fin2, open(output_filename, 'wb') as 

out_file: 

        # Create a new GRIB file for writing 

        with open(output_filename, 'wb') as fout: 

           while True: 

                t, u, v, q = None, None, None, None 

                # Extract parameters from the first file 

                for _ in range(4):  # Since there are 4 parameters in the first file 

                    gid1 = eccodes.codes_grib_new_from_file(fin1) 

                    if gid1 is None: 

                        break 

                    paramId1 = eccodes.codes_get(gid1, 'paramId') 

                    if paramId1 == 130: 

                        t = eccodes.codes_get_array(gid1, 'values') - 273.15 

                    elif paramId1 == 131: 

                        u = eccodes.codes_get_array(gid1, 'values') 

                    elif paramId1 == 132: 

                        v = eccodes.codes_get_array(gid1, 'values') 

                    elif paramId1 == 133: 

                        q = eccodes.codes_get_array(gid1, 'values') 

                # Extract pressure from the second file 

                gid2 = eccodes.codes_grib_new_from_file(fin2) 

                if gid2 is None: 

                    break 

                p = eccodes.codes_get_array(gid2, 'values')/100  

                # Check if we have all parameters 

                if all([x is not None for x in [t, u, v, q, p]]): 
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                    rh = compute_relative_humidity(t, q, p) 

                    q_air = compute_q_air(t, rh, p) 

                    ws = compute_ws(u, v, q_air) 

                #quantiles = [0, 25, 50, 75, 100]  # Percentiles: min, Q1, median, Q3, max  

                #for q1 in quantiles: 

                #value = np.percentile(ws, q1) 

                #    print(f"{q1}th percentile: {value}") 

                # Check if ws is scalar, and if so, convert it to an array  

                if np.isscalar(ws): 

                    ws_array = np.full_like(u, ws) 

                else: 

                    ws_array = ws 

                # Clone the gid1 (temperature) to create a new grib message for ws 

                new_gid = eccodes.codes_clone(gid1) 

                eccodes.codes_set(new_gid, 'paramId', 10)  # Some unused parameter ID for ws  

                eccodes.codes_set_array(new_gid, 'values', ws_array) 

                # Write the new message to the output grib file 

                eccodes.codes_write(new_gid, out_file) 

                # Release the grib IDs 

                eccodes.codes_release(gid1) 

                eccodes.codes_release(gid2) 

                eccodes.codes_release(new_gid) 

 

 

# Loop over years from 1940 to 2022  

for year in range(1943, 1979): 

    # Loop over all months in a year 

    for month in range(1, 13): 

        # Generate start and end date for the month  

        if month in [4, 6, 9, 11]: 

            last_day = 30 

        elif month == 2: 

            if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): 

                last_day = 29 

            else: 

                last_day = 28 

        else: 

            last_day = 31 
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        start_date = f"{year}-{month:02}-01" 

        end_date = f"{year}-{month:02}-{last_day}" 

        output_filename = f"ERA5-133ml_uvtq_{year}{month:02}.grib" 

        output_filename2 = f"ERA5-133ml_p_{year}{month:02}.grib" 

        print(f"Retrieving data for {start_date} to {end_date}...") 

        c.retrieve('reanalysis-era5-complete', { 

            'date': f'{start_date}/to/{end_date}', 

            'levelist': '133', 

            'levtype': 'ml', 

            'param': '130/131/132/133', 

            'stream': 'oper', 

            'time': '00/to/23/by/1', 

            'type': 'an', 

            'area': '90/-180/-90/180', 

            'grid': '0.25/0.25', 

            'format': 'grib', 

        }, output_filename) 

 

        c.retrieve('reanalysis-era5-single-levels', 

        { 

            'product_type': 'reanalysis', 

            'variable': 'surface pressure', 

            'year': year, 

            'month': f"{month:02}", 

            'day': generate_days(last_day), 

            'time': [ 

                '00:00', '01:00', '02:00', 

                '03:00', '04:00', '05:00', 

                '06:00', '07:00', '08:00', 

                '09:00', '10:00', '11:00', 

                '12:00', '13:00', '14:00', 

                '15:00', '16:00', '17:00', 

                '18:00', '19:00', '20:00', 

                '21:00', '22:00', '23:00', 

            ], 

            'grid': '0.25/0.25', 

            'format': 'grib', 

        },output_filename2) 
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        output_ws_filename = f"ERA5-133ml_ws_{year}{month:02}.grib" 

        # Process the downloaded grib file 

        process_grib_file(output_filename,output_filename2,output_ws_filename)  

        # Wait for 1 second before sending the next request 

        time.sleep(1) 

        os.remove(output_filename) 

        os.remove(output_filename2) 
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Abstract 

Climate change is one of the most important problems significantly affecting the exosphere, both directly and indirectly. The 

impacts of climate change can be disastrous not only for the environment but also for the lives, safety, and property of major 

populations, particularly in Afghanistan. This study assesses the variability of temperature trends in Kabul, Afghanistan. The 

predictands, i.e., the daily observed temperature data, were collected from local organizations, and the predictors were gleaned 

from the outputs of global climate models (GCM) based on the Fifth Assessment Report (AR5) of the Intergovernmental Panel 

on Climate Change (IPCC). Two statistical downscaling models were used to simulate future climate conditions under three 

scenarios. Trend analysis was conducted by linear regression, and the performance of the two downscaling methods was checked 

by using measured indicators. The results revealed that temperature will increase from 2025 to 2100 relative to 1990-2020 under 

three model regional climate predictions (RCP). By 2100, the maximum temperature would increase by 1.8°C (7.7%), 2.5°C 

(10.3%), and 3.7°C (14.3%) according to RCP 2.6, RCP 4.5 and RCP 8.5, respectively. Moreover, the annual average temperature 

for the period of 2025-2100 was predicted to rise by 2.3°C (12.9%) under RCP 2.6, 2.6°C (14.3%) under RCP 4.5, and 3.6°C 

(18.8%) under RCP 8.5 relative to the reference period (1990-2020). Minimum temperatures also increase in the range of 2.2°C 

(19.9%) under RCP 2.6, 2.9°C (24.9%) under RCP 4.5 and 4.3°C (32.7%) under RCP 8.5. These temperature increases would 

affect ecosystems, crop production, human health, and many other sectors. 
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1. Introduction 

Climate change is currently the most important topic globally. Many studies have determined the 

occurrence and effects of climate change worldwide (Saddique et al. 2019), but their impacts are not 

uniform across the globe: some regions are more susceptible to climate change (Munawar et al. 2022). It 

is widely accepted that human activities are major drivers of recent global climate change and global 

warming recorded since the pre-industrial era (Solomon et al. 2009). Changes in atmospheric properties 

impose a wide range of direct and indirect impacts on the environment, agriculture, food security, human 

health, and the hydrological cycle (Javadinejad et al. 2021). Meteorological properties change frequently, 

through significant changes in local distributional properties of temperature and precipitation, among 

other atmospheric variables (IPCC 2007a, 2007b, 2013). Changes in temperature variability can occur 

from diurnal to multi-decadal time scales and from the local to the global scale, potentially even displaying 

opposing signals in different seasons and at different spatial scales (IPCC 2022). According to the 

Intergovernmental Panel on Climate Change (IPCC) 6th assessment report, the projected average warming 

in Afghanistan will be about 1.4-6.0°C by the end of 2100. 
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In particular, the impacts of climate change are very serious for Afghanistan. Extreme events, including 

heat waves, floods, and droughts, are increasing, and they threaten the lives, safety, and property of major 

human populations (WBG 2021). The majority of Afghanistan’s population relies on available natural 

resources directly or indirectly for their livelihoods (UNDP 2017). The increased frequency of extreme 

climatic events in Afghanistan has caused great economic losses (UNDP 2017) and threatens the 

foundations of the country’s economy, stability, and food security. For example, the impacts of climate 

change have negative consequences for crop production; a reduction in crop yields reduces food security 

and damages the livelihoods of people. The country needs to promote and strengthen adaptation 

strategies to reduce the risks of climate change. It is important to know how trends, such as temperature 

trends, are changing. 

Temperature trends were assessed by statistical downscaling models in this study. The observational data 

were acquired from local organizations such as the Ministry of Agriculture, Irrigation and Livestock 

(MAIL), the Ministry of Energy and Water (MEW), and the Meteorological Department of Afghanistan 

(MDA). The modeling study employed General Circulation Models (GCM) based on the Fifth 

Assessment Report (AR5) of the IPCC that is available in the Coupled Model Intercomparison Project 

Phase 5 (CMIP5). The GCMs support the assessment of potential climate change impacts on a global 

scale (Disasa, Haofang 2022). Predictors, in the statistical downscaling model (SDSM) for the relationship 

between the National Centers for Environmental Prediction (NCEP) predictors and local predictands 

(precipitation), were applied for screening purposes (Saddique et al. 2019; Munawar et al. 2022). The 

NCEP and National Center for Atmospheric Research (NCAR) data were acquired from the GCM 

(CanESM2) model. 

The SDSM and the Long-Ashton research station weather generator (LARS-WG) are two well-known 

statistical downscaling models to downscale GCM outputs such as temperature, rainfall, and solar 

radiation (Saddique et al. 2019). Hence, many recent studies have focused on the evaluation and 

comparison of the two models in terms of their ability to simulate mean temperature and extreme 

temperature frequencies using a parametric distribution at a local scale (Hassan et al. 2014). The minimum 

temperature (Tmin), maximum temperature (Tmax), and average temperature (Tave) were evaluated by using 

observed and generated climatic data under three representative concentration pathways (RCP) scenarios: 

RCP 2.6, RCP 4.5, and RCP 8.5. Future projections from the two models did not agree; the results of 

LARS-WG were close to the reference period, whereas SDSM projections differed significantly. Hassan 

et al. (2014) claimed that the different results arose from differences in downscaling strategies and basic 

concepts. Both models, however, can be adopted as downscaling tools for future periods (Hashmi et al. 

2011; Hassan et al. 2014).  

For Afghanistan, there are not many published papers on atmospheric trend analyses in recent years 

based on either of the two models. The main objective of this study is to assess atmospheric temperature 

change in the reference and future periods (1990-2100). The results will help to define the scale of change 
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in temperature trends, thus supporting policies for adaptation and mitigation strategies to reduce climate 

change impacts.  

2. Materials and methods 

2.1. Study area 

Afghanistan, located in the heart of south-central Asia between 33°56′2.54″ N and 67°42′12.35″ E 

(Sarwary et al. 2023), has a semi-arid climate (UNDP 2017; WBG 2021; Rasouli 2022). There is great 

variation in the climate, soil, topography, vegetation, and natural ecosystems of the country (Aich et al. 

2017). Temperature varies greatly by season and altitude, with mountain regions ranging from <0 to 

>35°C. The average surface air temperature is 13.37°C with a range of 1.92°C, 13.74°C, 24.26°C and 

13.41°C in December-February, March-May, June-August, and September-November, respectively. The 

average annual precipitation is 337.97 mm with a range of 134.35, 146.04, 22.03, and 35.05 mm in 

December-February, March-May, June-August, and September-November, respectively (WBG 2021). 

 

Fig. 1. The study area (USAID 2016; Bokhari et al. 2018). 

This study was conducted in Kabul, the capital of Afghanistan, south of the Hindu-Kush mountain range. 

The climate of Kabul is affected by the climate of the Hindu-Kush mountains. This region has a 

continental, cold, semi-arid climate with rainfall concentrated in the winter and spring months. Winter 

(January-March) is a very cold season with snowfall, while spring is more humid with higher precipitation 

frequency. Summer has very low precipitation; it is the warmest season, with a longer sunshine period of 

about 356.8 hours per month in July and very low humidity (36% in June). Autumn has low rainfall of 3.7 

mm, 18.6 mm, and 21.6 mm for October, November, and December, respectively, with warm afternoons 

and cool evenings. Kabul is situated at 34.45 N and 69.00 E at an elevation of 1805 m above mean sea 

level and covers a total area of 4655.25 km2 (Table 1). The local steppe climate influences Kabul, which 

receives little yearly rainfall. The average annual temperature is 11.4°C, and the annual total precipitation 

is 362 mm. The driest month is June with about 1 mm of precipitation. Most rainfalls in March average 
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88 mm. July, with an average temperature of 23.2°C, is the warmest month. The lowest average 

temperature for the year is –2.9°C in January. 

Table 1. Details of the meteorological stations in Kabul. 

Station name Lat (N) Long (E) Elevation (m) Annual rainfall (mm) Mean temperature (C) 

Kabul – airport 34.55 69.21 1791 197 14.10 

2.2. Data description 

2.2.1. Site data 

The daily observed maximum (Tmax) and minimum temperature (Tmin) were acquired from the 

meteorological stations collected by local organizations, including MDA, MAIL, and MEW, from 2003 to 

2020 and online data sets. The thirty years of data (1990-2020) were used as the observed data period.  

2.2.2. NCEP/NCAR reanalysis data 

The daily reanalysis data for the baseline period were acquired from the NCEP/NCAR. NCEP 

predictors, in the SDSM model, for the relationship among the NCEP predictors and local predictands 

were applied for screening purposes (Saddique et al. 2019; Munawar et al. 2022). The NCEP/NCAR data 

were acquired from the GCM (CanESM2) model. 

2.3. RCP Scenario Data 

The Coupled Model Intercomparison Project Phase 5 (CMIP5) IPCC report that provides a wider picture 

of future climate change scenarios was used. Three future climate change scenarios, including a mitigation 

scenario (RCP 2.6), a medium stabilization scenario (RCP 4.5), and an extreme scenario (RCP 8.5) 

(Saddique et al. 2019) were selected for the periods of 1990-2100. RCPs describe different levels of 

greenhouse gases and other radiative forcing that might occur in the future. RCP 2.6 leads to a very low 

forcing level, RCP 4.5 leads to a medium forcing level, and RCP 8.5 leads to very high emission scenarios 

(Wayne 2013). Trend analysis was conducted by parametric methods such as regression. 

2.4. Projection and downscaling  

Downscaling of Tmin and Tmax was performed using two models, SDSM and LARS-WG. The available 

observed data were obtained from MAIL, AMD, and MEW and the missing data were derived from the 

open-source datasets for the period of 1990-2020.  

LARS-WG is a stochastic weather generator that was applied for the simulation of weather data for 

reference and future climatic variable conditions. The observed climatic data (Tmax and Tmin) were used in 

LARS-WG to generate time series for future periods. The future climate scenarios were generated for the 

periods of 2025 -2100 for selected RCPs (RCP 2.6, RCP 4.5, and RCP 8.5) based on the baseline 

parameters.  
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SDSM was used to develop the relationship between the predictands (Tmax and Tmin) and NCEP/NCAR 

predictors. NCEP predictors were used to simulate the time series data for the periods. The performance 

of the models to generate synthetic time series was calibrated and validated (Saddique et al. 2019; 

Javadinejad et al. 2021). 

2.5. Model performance 

Trend analysis was conducted by parametric methods such as linear regression as given by equation 1: 

Y = a + bX (1) 

where: X is the explanatory variable; Y is the dependent variable; a is the intercept, b is the slope of the 

line. 

The performances of the models were estimated by comparing the observed and generated Tmin and Tmax 

data by using statistical indicators. These indicators were computed by the equation 2-6 as follows: 

𝑅 =
∑(𝑋−�̅�)(𝑦−𝑦)̅̅ ̅

√(𝑥−𝑥)̅̅ ̅2−∑(𝑦−𝑦)2̅̅ ̅̅ ̅
 (2) 

R2 = Var-Exp by mod/ Total variance (3) 

𝑀𝐴𝐸 =   
∑ [𝑥𝑖−𝑦𝑖]𝑛

𝑖=1  

𝑛
 (4) 

𝑅𝑀𝑆𝐸 =   √∑ (
𝑛

𝑖=1
(𝑋𝑖−𝑌𝑖)2 

𝑛
 (5) 

NRMSE = RMSE/Xi (6) 

Here: R is the correlation coefficient; R2 is the determination coefficient; MAE is mean absolute error; 

RMSE is root mean square error; NRMSR is normalized root mean square error; X and Y are the values of 

variables; and �̅� and ӯ are the means of variables. Xi is the observed value of variables; Yi is the simulated 

value by the models; and n is the measured number (Ababaei et al. 2010; Delavar et al. 2016; Kounani et 

al. 2021; Munawar et al. 2022). 

3. Results 

3.1. Evaluation criteria 

The results of the statistical measures proved both models were efficient over the validation period for 

the variables Tmin and Tmax. Table 2 illustrates measured indices of the statistical downscaling models. The 

models (SDSM and LARS-WG) were assessed (validated) by using statistical measures: R, R2, MAE, 

RMSE, and NRMSE (%) between observed and simulated data. The results of statistical measurements 

proved that both models are efficient for the estimation of Tmin and Tmax, as shown in Table 2. 
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Table 2. Performance indicators of maximum and minimum temperature 

Variables Models R R2 MAE RMSE NRMSE (%) 

Tmin 
LARS-WG 0.9996 0.9992 4.49 0.158 0.94 

SDSM 0.99 0.99 0.1121 0.159 0.85 

Tmax 
LARS-WG 0.9989 0.9979 0.161 0.17 0.82 

SDSM 0.99 0.99 0.02 0.006 0.03 

3.2. Temperature trend analysis for observation data 

To analyze the variation of temperature variables for Kabul meteorological stations, daily observed data 

from local data sets (MAIL 2022; MDA 2022; MEW 2022) were used. The monthly and yearly averages 

of temperature are shown in Figure 2. 

 

Fig. 2. The average monthly maximum (Tmax), mean (Tave), and minimum (Tmin) temperatures during the reference 

period (1990-2020). 

 

Fig. 3. Multi-year sequence (2003-2020) of the average annual maximum (Tmax), annual mean (Tave), and annual 

minimum (Tmin) temperature. 

Analysis of average monthly temperature trends indicates that January is the coldest month and July is the 

warmest month, with a range of –2 to 16.7°C in Tmin, 5.0-24.3°C in average temperature, and 10.2-32.1°C 

in Tmax.  

3.3. Temperature trend analysis for the future 
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Annual changes were projected for maximum, average, and minimum temperatures under three RCPs for 

the future (2025-2100). Table 3 shows the projected average temperature during 2025-2100 based on the 

reference period (1990-2020) under RCP 2.6, RCP 4.5, and RCP 8.5. Moreover, Figure 3 shows the 

average temperature change compared to the future and baseline periods. 

Table 3. Average annual average temperature during reference (1990-2020) and future (2025-2100) periods. 

Annual average temperature (°C) 

 Ref. RCP 2.6 RCP 4.5 RCP 8.5 

1990 15.1    

1995 15.7    

2000 15.7    

2005 15.3    

2010 15.4    

2015 15.9    

2020 15.7    

2025  16.8 16.7 17.0 

2030  16.8 17.0 17.3 

2040  17.1 17.1 17.6 

2050  17.7 18.0 18.8 

2060  17.7 18.1 18.9 

2070  17.7 19.0 20.7 

2080  20.6 19.1 17.8 

2090  17.8 19.2 21.9 

2100  18.5 19.5 22.6 

Average 15.6 17.8 18.2 19.2 

Difference  2.3 2.6 3.6 

Change (%)  12.9 14.3 18.8 

 

 

Fig. 4. The comparison of annual average temperature for the reference and future periods under different RCPs. 

Average annual maximum temperature was shown in Table 4 and Figure 5 during reference and future periods.  

Table 4. Average annual maximum temperature during reference (1990-2020) and future (2025-2100) periods. 
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Annual maximum temperature (°C) 

 Ref. RCP2.6 RCP4.5 RCP8.5 

1990 21.9    

1995 22.4    

2000 22.1    

2005 22.1    

2010 22.3    

2015 22.6    

2020 22.1    

2025  23.5 23.8 24.1 

2030  23.6 23.5 23.7 

2040  23.3 23.4 23.6 

2050  24.2 24.6 25.3 

2060  24.0 24.4 25.1 

2070  24.4 25.7 27.1 

2080  24.2 25.6 27.0 

2090  24.5 25.8 28.5 

2100  25.0 26.3 29.0 

Average 22.2 24.1 24.8 25.9 

Difference  1.8 2.5 3.7 

Change (%)  7.7 10.3 14.3 

 

 

Fig. 5. The comparison of average maximum temperature for the reference (1990-2020) and future (2025-2100) 

periods under RCP 2.6, 4.5, and 8.5. 

Table 5 and Figure 6 illustrated the average minimum temperature based on reference periods.  

Table 5. Average annual minimum temperature during reference (1990-2020) and future (2025-2100) periods. 

Annual minimum temperature (°C) 

 Ref. RCP2.6 RCP4.5 RCP8.5 

1990 8.3    

1995 9.0    

2000 9.2    

2005 8.5    
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2010 8.5    

2015 9.2    

2020 9.3    

2025  10.1 10.6 11.0 

2030  10.1 10.6 11.0 

2040  10.9 10.9 11.4 

2050  11.2 11.6 12.4 

2060  11.5 11.9 12.8 

2070  11.1 12.4 13.9 

2080  11.5 12.7 14.3 

2090  11.2 12.4 15.6 

2100  12.1 13.3 16.3 

Average 8.9 11.1 11.8 13.2 

Difference  2.2 2.9 4.3 

Change (%)  19.9 24.9 32.7 

 

Fig. 6. The comparison of average minimum temperature for the reference (1990-2020) and future (2025-2100) 

periods under RCP 2.6, 4.5 and 8.5. 

The annual change in temperature trends (average, maximum, and minimum temperature) is shown in 

Tables 6-8. Table 9 shows the monthly change in temperature trends. Table 9 shows the change in 

temperature trends by month (maximum, average, and minimum temperature) over the projection period 

(2025-2100) 

The monthly projected Tmin showed an increase ranging between 2.38°C, 3.20°C, and 4.61°C under RCP 

2.6, RCP 4.5, and RCP 8.5, respectively. The monthly projected maximum temperature showed an 

increase ranging between 1.88°C, 2. ° C, and 3.92°C under RCP 2.6, RCP 4.5, and RCP 8.5, respectively. 

Also, the monthly projected average temperature showed an increase ranging between 2.13, 2.92, and 

4.26°C under RCP 2.6, RCP 4.5, and RCP 8.5, respectively. The results showed a continuously increasing 

trend of projected temperature in future scenarios. 
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Table 6. Annual changes of maximum temperature during the projection period (2025-2100) under RCP 2.6, RCP 

4.5, and RCP 8.5. 

Annual change in maximum temperature (°C) 

 RCP2.6 RCP4.5 RCP8.5 

2025 1.3 1.6 1.8 

2030 1.4 1.2 1.5 

2040 1.1 1.1 1.4 

2050 2.0 2.4 3.1 

2060 1.8 2.2 2.9 

2070 2.1 3.5 4.9 

2080 1.9 3.3 4.8 

2090 2.2 3.6 6.3 

2100 2.7 4.0 6.8 

Avg. 1.8 2.5 3.7 

Table 7. Annual change in average temperature during the projection period (2025-2100) under RCP2.6, RCP4.5 and 

RCP8.5. 

Annual change in average temperature (°C) 

 RCP 2.6 RCP 4.5 RCP 8.5 

2025 1.2 1.1 1.4 

2030 1.2 1.4 1.7 

2040 1.5 1.5 2.0 

2050 2.1 2.4 3.2 

2060 2.1 2.5 3.3 

2070 2.1 3.4 5.1 

2080 5.0 3.5 2.2 

2090 2.2 3.6 6.3 

2100 2.9 3.9 7.0 

Ave. 2.2 2.6 3.6 

Table 8. Annual change in minimum temperature during the projection period (2025-2100) under RCP 2.6, RCP 4.5 

and RCP 8.5. 

Annual change in minimum temperature (°C) 

 RCP 2.6 RCP 4.5 RCP 8.5 

2025 1.23 1.7 2.14 

2030 1.26 1.68 2.13 

2040 2.03 2.06 2.5 

2050 2.3 2.67 3.47 

2060 2.64 3.06 3.89 

2070 2.22 3.49 5.04 

2080 2.61 3.83 5.42 

2090 2.36 3.51 6.68 

2100 3.21 4.38 7.44 

Avg. 2.2 2.9 4.3 

Table 9. Changes in temperature trends by month (Tmin, Tmax, and Tavg) under RCP 2.6, RCP 4.5, and RCP 8.5 over 

the period 2025-2100. 
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4. Discussion and conclusion 

This study was carried out to estimate temperature variables in the reference (1990-2020) and future 

(2025-2100) periods under RCP 2.6, RCP 4.5, and RCP 8.5 by using two statistical downscaling models 

(SDSM and LARS-WG). In general, according to the performance indicators, both models (SDSM and 

LARS-WG) are efficient for downscaling and projecting, but the LARS-WG model was approximately 

more suitable. The temperature trends (minimum, maximum, and average temperature) are shown to 

increase by a range of 0.28°C, 0.69°C, and 0.48°C, respectively the reference period (1990-2020).  

The future temperature is predicted to increase from 2025 to 2100 at much higher rates compared to the 

reference period, under three RCPs. Average temperature showed an increase under RCP 2.6, RCP 4.5, 

and RCP 8.5 of 2.3°C, 2.6°C, and 3.6°C, respectively. Average temperature would increase by 12.9%, 

14.3%, and 18.8% (Table 3, Fig. 4) by 2100 under RCP 2.6, RCP 4.5 and RCP 8.5, respectively. Maximum 

temperature would increase under RCP 2.6, RCP 4.5, and RCP 8.5 by 1.8°C, 2.5°C, and 3. ° C, 

respectively, for the future periods. Maximum temperature would increase by 7.7%, 10.3%, and 14.3% 

under RCP 2.6, RCP 4.5, and RCP 8.5, respectively, by 2100 compared to the reference period. Moreover, 

an increase in annual minimum temperature by 2100 was predicted at 2.2 C, 2.9 C, and 4.3 C under RCP 

2.6, RCP 4.5, and RCP 8.5, respectively. The minimum temperature would increase at a rate of 19.9%, 

24.9%, and 32.7% (Table 5, Fig. 6) under RCP 2.6, RCP 4.5, and RCP 8.5, respectively, during 2025-2100. 

Temperature increases with a range of values have been reported in many studies, such as Aich et al. 

(2017), Hassanyar et al. (2017), UNDP (2017), and WBG (2021). A 1°C increase from 1900-2017 was 

reported in WBG (2021). Annual temperatures have also been projected to increase by 3.50°C and 7.00°C 

(NEPA 2018), or 1.70°C and 2.30°C (Sarwary et al. 2023) by 2050; increases of 2.00°C and 6.50°C (FAO 

2016) or 2.70°C and 5.50°C (WBG 2021) by 2100 under RCP 4.5 and RCP 8.5, respectively, relative to 

the baseline period in Afghanistan. The temperature increase was projected to occur most rapidly during 

spring and summer at higher altitudes (central highlands and Hindu Kush) (NEPA 2018). Moreover, an 

increase in global mean temperature by 0.30-1.70°C under RCP 2.6, 1.10-2.60°C under RCP 4.5, and 

 Tmin Tmax Tavg 

 RCP 2.6 RCP 4.5 RCP 8.5 RCP 2.6 RCP 4.5 RCP 8.5 RCP 2.6 RCP 4.5 RCP 8.5 

Jan 2.56 3.57 5.11 2.06 3.14 4.08 2.31 3.35 4.60 

Feb 3.64 4.88 6.28 2.85 3.96 4.92 3.24 4.42 5.60 

Mar 3.86 4.76 6.27 2.66 3.42 4.76 3.26 4.09 5.52 

Apr 3.96 4.65 6.07 3.70 4.58 6.06 3.83 4.62 6.07 

May 3.07 3.54 4.75 2.95 3.81 5.10 3.01 3.68 4.93 

Jun 2.34 2.84 3.99 2.66 3.47 4.64 2.50 3.16 4.32 

Jul 1.79 2.55 3.73 1.22 1.78 2.96 1.50 2.16 3.35 

Aug 1.33 2.28 3.58 1.33 1.74 3.05 1.33 2.01 3.32 

Sep 1.05 2.04 3.53 0.63 1.14 2.79 0.84 1.59 3.16 

Oct 1.67 2.57 4.12 0.61 1.16 2.81 1.14 1.86 3.46 

Nov 1.74 2.52 4.06 0.79 1.52 2.82 1.26 2.02 3.44 

Dec 1.71 2.37 3.94 1.23 2.09 3.12 1.47 2.23 3.53 
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2.60-4.80°C under RCP 8.5 has been projected by the end of the 21st century (2081-2100) relative to 

1986-2005 (IPCC 2014). The global mean temperature is expected to increase by 1.40-5.80 C by 2100 

(Sarwary et al. 2023). 

This study revealed that temperature trends increase during reference and future periods. Climatic 

variation can affect many aspects of environmental systems. Although this study highlights temperature 

trends, additional climatic factors such as precipitation, wind speed, and solar radiation need further 

study. An increase in temperature would affect ecosystems, agricultural production, human health, and 

more environmental systems.  

Afghanistan has faced a higher increasing temperature than the global average over the century, and it 

shows extreme vulnerability to hazards such as drought and flood. Findings revealed that an increase in 

temperatures (average temperature and maximum temperature) harms wheat production because of heat 

and drought stress, while the increase in minimum temperature has a positive effect on wheat production. 

This vulnerability is amplified by poverty, undernourishment, food insecurity, and inequality. These are 

the driving forces of negative impacts on agriculture, natural resources, natural ecosystems, forests, water 

resources, and society. 
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Abstract 

Temperature is a key variable in understanding climate change. In tropical West Africa, however, temperature has been neglected 

because it is always hot because of the sun. Studying extreme temperatures can be a way to better understand climate change in 

the Sudano-Sahelian region of West Africa. The main objective of this study is to analyze changes in extreme temperatures. To 

this end, temperature data were obtained from Power NASA over the period 1981-2022 at monthly time steps. The methods used 

to analyze the data were normality and homogeneity statistics, linear regression, Mann-Kendall tests, and Spearman’s r test. Tests 

of Sen’s slope estimator, moving averages, and z-score. The study shows that maximum temperatures are normally distributed, 

unlike minimum temperatures, and that maximum temperature data are homogeneous, with breaks in the periods 1998, 2000, 

2006, and 2010 before, during, and after the rainy seasons. On the other hand, minimum temperature data are generally not 

homogeneous and do not show many breaks. The study also shows that extreme temperatures tend to increase before, during, 

and after the rainy season, according to Spearman’s r test. However, the Mann-Kendall test shows that extreme temperatures 

generally do not show trends. Furthermore, temperatures are continuously variable, with an increase in temperature anomalies in 

the 1980s, 2000s, and 2020s. 
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1. Introduction 

Global warming as a result of greenhouse gas emissions is now undeniable, and there has been a 

significant increase in the atmospheric concentration of CO2 over the last century (Alemu, Dioha 2020). 

The increase in average and extreme temperatures in Africa can be attributed to climate change caused by 

human activity (Trisos et al. 2022). Several studies have found that temperatures are changing in Africa. 

Muthoni et al. (2019) studied the extent and significance of spatio-temporal trends in rainfall, maximum 

(Tmax) and minimum (Tmin) temperatures for West Africa. In northern Ghana, De Pinto et al. (2012) found 

that temperatures were higher than in any other part of Ghana and that they could increase between 1.0°C 

and 3.0°C by 2060 and between 1.5°C and 5.2°C by 2090. In Mali, Kouressy et al. (2019) report that 

between 1951 and 2010, maximum temperatures increased significantly by 0.44°C to 1.53°C and minimum 

temperatures by 1.05°C to 1.93°C, depending on the location. In Benin, Senegal, and Niger, mean annual 

minimum temperature increased significantly between 1965 and 2013: in less than 50 years, minimum 

temperature increased by 1.2°C in Djougou (Benin), 1.8°C in Bambey (Senegal) and 1.4°C in Niamey 

(Niger) (Kosmowski et al. 2015).  

Few statistical studies have been carried out in Burkina Faso on the trend and variability of extreme 

temperature (Bambara et al. 2018; Rouamba et al. 2023), and even fewer on the seasonal analysis of 
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extreme temperature in the Sudano-Sahelian part of Burkina Faso. It is very important to gain a better 

understanding of the seasonal occurrence of extreme temperatures because they cause illness and even 

death in young children and the elderly (Arisco et al. 2023). In this article, seasonality is based on rainfall, 

as temperatures change before, during, and after the rainy season. Three periods can be distinguished: the 

pre-wet period (January to May), the wet period (June to October) and the post-wet period (November to 

December). In this study, we analyze the seasonal trends in extreme temperatures over the past few 

decades. 

2. Materials and methods 

2.1. Data and methods 

Burkina Faso is located in West Africa, where Sahelian, Sudano-Sahelian, and Sudanian climatic domains 

dominate (Fig. 1).  

 

Fig. 1. Climatic zones and study stations in Burkina Faso. 

The raw data used to assess extreme temperatures came from NASA’s POWER (National Aeronautics 

and Space Administration Prediction of Worldwide Energy Resource) online public database 

(https://power.larc.nasa.gov/data-access-viewer). Power data are based on satellite observations from 

which surface insolation values are derived. The meteorological parameters are based on the MERRA-2 

assimilation model. The database has the advantage of being generally continuous over time and is based 

on a global grid with a resolution of 0.5° latitude by 0.5° longitude (Marzouk 2021). Numerous studies 

have assessed the accuracy of the data and found that the source of the data (NASA POWER) is 

sufficiently accurate to allow valid interpretation (Jiménez-Jiménez et al. 2021; Marzouk 2021; Ahmed et 

al. 2022; Kwawuvi et al. 2022; Oloyede et al. 2023; Darman et al. 2024; Kheyruri et al. 2024). 

Data for Burkina Faso from NASA’s power data access viewer was collected at monthly intervals over the 

period 1981 to 2022. The characteristics of the localities selected are shown in Table 1 below (Table 1). 
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Table 1. Characteristics of the selected stations, all within the Sudan-Sahelian. 

Station names 
Type of climate 

domain 
Regions concerned 

Period 

selected 
Latitude Longitude Altitudes 

Ouagadougou Sudan-Sahelian Centre 1981-2022 12.3489 –1.5197 303.27 m 

Kaya Sudan-Sahelian North-East 1981-2022 13.0856 –1.0583 313.72 m 

Ouhigouya Sudan-Sahelian North 1981-2022 13.5614 –2.4014 319.61 m 

Fada Gourma Sudan-Sahelian 
East 

1981-2022 12.22 0.6308 269.06 m 

Diapaga Sudan-Sahelian 1981-2022 12.0804 1.8476 260.2 m 

Dedougou Sudan-Sahelian 

Boucle du Mouhoun 

1981-2022 12.4454 –3.3764 283.4 m 

Boromo Sudan-Sahelian 1981-2022 11.7446 –2.9351 288.65m 

Kouka Sudan-Sahelian 1981-2022 11.8641 –4.3213 346 m 

Source: https://power.larc.nasa.gov/data-access-viewer/. 

2.1.1. Statistical normality and homogeneity 

The normality test is important for determining appropriate methods for the assessment of significant 

trends in time series of precipitation data, using parametric or non-parametric methods of trend analysis 

(Talib et al. 2024). Normality tests, including Shapiro-Wilk W, Anderson-Darling, Lilliefors, and Jarque-

Bera tests, were applied to the annual time series to evaluate the normal distribution of time series data. 

For all four tests, the null hypothesis is as follows: 

H0: the temperature time series has a normal distribution; if the p-value is less than 5%, the normal 

distribution can be rejected, and the alternative hypothesis (H1) can be accepted. Among the tests 

proposed, the Shapiro-Wilk and Anderson-Darling tests are considered the most accurate, while the 

Lilliefors and Jarque-Bera tests are given for reference (Hammer 2024). Only the first two tests have been 

considered in this study. Thus, the mathematical formula for the calculation of Shapiro-Wilk (W) is 

(Asamoah, Ansah-Mensah 2020): 

2

( )1

2

1

( )
                                                                      (1)

( )

n

i ii

n

ii

a x
W

x x

=

=

=
−




; (1) 

where xi is the value of the ordered sample, ai is a constant generated from the means, variances and 

covariances of the ordered statistics, n is the number of observations, and x  is the sample mean. 

The Anderson-Darling (AD) test uses the cumulative distribution function to determine normality, and its 

formula is as follows (Asamoah, Ansah-Mensah 2020): 
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where n is the sample size, F(x) is the cumulative distribution function for the specified distribution, and i 

the i th sample for an ascending order. 
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The Buishand test was used to determine the homogeneity of the temperature data. The Buishand test, 

like the Petitt test, is more sensitive to breaks in the middle of the time series. (Wijngaard et al. 2003). In 

the Buishand test, the assumption is that the data are normally distributed and that the data are 

independently and randomly distributed (Bickici Arikan, Kahya 2019). The adjusted partial sums are 

defined as (Lin et al. 2015): 

* *

0

1

0 and S ( )  k=1,2,3,......,n                                             (3)
k

K i

i

S X X
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= = −  (3) 

There will be no systematic deviation of iX  values from their mean, and 𝑆𝐾∗ values will fluctuate around 

zero if the series is homogeneous. The ‘rescaled adjusted interval’ R can be used to test the significance of 

the change in the mean. The value of R is given by: 
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The Von Neumann test (VNT) examines the randomness and change point detection of the time series. 

The VNT test statistic can be computed as (Lebeza et al. 2023): 
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where N is the test static value of VNT, X is observed time-series data and X refers to the mean of 

observed time-series data. Homogenous time series data can be found if the expected value of N is 2. The 

value of N is less than 2 can show a break pattern. 

2.1.2. Method of trend analysis 

Trends in hydro-climatological variables are generally evaluated using a variety of statistical tests, such as 

linear regression, Mann-Kendall (MK) and modified MK tests, with non-trending pre-whitening and Sen 

Slope (SS) estimators (Xu et al. 2007; Longobardi, Villani 2010; Nisansala et al. 2020; Ay 2021); other 

authors add the Spearman’s r test (Yue et al. 2002; Yacoub, Tayfur 2019). The Mann-Kendall test, 

Spearman’s r test and Sen’s slope estimator were used to assess the trend and magnitude of seasonal 

temperature extremes in Burkina Faso. 

• Linear Regression Analysis. 

Linear Regression is a parametric method used to estimate linear trends in time series (Rahmani et al. 

2015; Esit, Yuce 2022): 

0 1 +                                                                                    (6)Y X  = +  (6) 
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where Y is the temperature time series, X is the year or time, β0 = Intercept, β1 = Slope, and ε is the 

residual error. 

• Mann-Kendall Trend Test. 

Mann-Kendall (MK) is a non-parametric test (Mann 1945). It is specifically used to detect trends in 

environmental, climatic, and hydrological time series (Aditya et al. 2021; Lornezhad et al. 2023). 

According to Ahmad et al. (2015), the null hypothesis (H0) of this test is that there is no monotonic 

trend in the time series. The alternative hypothesis (Ha) is that there is a trend. The MK test is based 

on the calculation of the variance (S) and is obtained by the following equation (Mirabbasi et al. 2020): 
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The sgn function is calculated as follows: 
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where n is the length of the sample, xk and xj come from k = 1, 2, ..., n – 1 and j = k + 1, ..., n. If n is 

greater than 8, the S statistic approximates the normal distribution. The mean of S is 0 and the variance 

of S can be obtained as follows: 
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The Z statistic is calculated using the formula: 
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The null hypothesis H0 (no trend) is rejected if the significance level or p-value is <5%. Table 2 below 

shows the level of significance. 

Table 2. Interpretation of the meaning of the trend in the MK. 

Mann-Kendall test (p-value) Significance of the trend 

<0.01 Very significant 

0.01≤ p <0.05 Significant  

≥0.05 Not significant 

Source: Author 
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• Spearman’s r Test (SR). 

Spearman’s r (SR) is a powerful method for detecting linear and non-linear trends and is frequently 

used to test for the absence of trends (Rahman et al. 2017). In this test, the null hypothesis (H0) of the 

test is that all the data in the time series are independent and identically distributed, while the 

alternative hypothesis (H1) is that there are upward or downward trends. Positive values of the SRZ 

standardized test statistic indicate upward trends, while negative values indicate downward trends in 

the time series (Zakwan 2021). The test statistics rsp and standardized statistics 𝑍sp are defined as 

(Ahmed et al. 2022): 

2

1

2

6 )
R =1-                                                                  (11)

( 1)

n

ii
sp

D i

n n

=
−

−


 (11) 

2
Z                                                                       (12)

1
sp sp

sp

n
R

R

−
=

−
; (12) 

where 𝐷𝑖 is the rank of 𝑖th observation, 𝐼 is the chronological order number, 𝑛 is the total length of the 

time series data, and 𝑍sp is Student’s 𝑡-distribution with (𝑛 − 2) degree of freedom. The positive 

values of 𝑍sp represent an increasing trend across the hydrologic time series, and negative values 

represent the decreasing trends. 

• Sen’s slope estimator test. 

The non-parametric Sen test (Sen 1968) is commonly used for the estimation of the magnitude of 

trends in time series data. The Sen test for the slope assumes a linear trend and is a quantification of 

the change over time (Muia et al. 2024). The slope of Sen is calculated according to the following 

equation (Frimpong et al. 2022): 

 for i=1,....,N,                                                    (13)
j k

i

x x
Q

j k

+
=

−
; (13) 

where, xj and ik = the data values at times j and k (j > k). 

If there is only one datum in each period, then: 

 ( 1)
                                                    (14)

2

n n
N

−
= ; (14) 

where n = total number of observations. 

The N values of Qi have been ranked from the lowest to the highest, and the median slope or Sen’s 

slope estimator has been calculated as follows: 
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A positive value of 𝑄𝑖 represents an upward trend; a negative value of 𝑄𝑖 represents a downward trend, 

over time (Ahmad et al. 2015). 

2.1.3. Method analysis variability 

• The moving average method 

The moving average is the most widely used method for the measurement of seasonal fluctuations 

(Bacescu-Carbunaru, Condruz-Bacescu 2013). In this study, moving averages (MA) have been used for 

the assessment of the overall trend in the variation of extreme temperatures (Zeitoun 2024): 

1
( ) 1

                                                                        (16)

n

i
M d i

MA
n

=
− +

=


; (16) 

where n is the number of data points, d is the moving average, and M is the data calculated as the simple 

moving average with the period is 3, MA: moving average. 

• The Fligner Killeen test 

This non-parametric test (Conover et al. 1981) indicated significant differences in variability by testing 

the equality of the coefficients of variation of two samples. The coefficient of variation (or relative 

variation) is defined as the ratio of standard deviation to the mean in percent, and is computed as 

(Hammer 2024): 

21
( )

1
*100= *100                                                                        (17)

ix x
n
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 (17) 

The null hypothesis of the statistical test is H0: the samples were taken from populations with the same 

coefficient of variation. However, when the p-value is less than 5%, the null hypothesis is rejected, and 

the alternative hypothesis is supported. 

• Temperature Anomaly Detection Method 

Anomaly detection is a popular research area in time series data mining, where data points that don’t 

conform to other data are referred to as anomalies (Wickramasinghe et al. 2023). Z-score is used to 

detect temperature anomalies, so the hypothesis is that the temperature data either contain anomalies 

or they do not (Zeitoun 2024). The formulas for a z-score transformation are (Jackson 2009): 

                                                                                               (18)
x

Z




−
= ; (18) 
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where z is the symbol for the standard score, µ is the mean, σ is the standard deviation. The significant 

level is 0.95, with alpha (α) equal to 0.05, and the critical value of the Z-score is +1.96 and –1.96 

(Zeitoun 2024). According to Pandey et al. (2023), the value of the z-score indicates the number of 

standard deviations the variables are from the mean. If a z-score is equal to 0, then the mean is on the 

mean. A positive z-score indicates that the raw score is comparatively higher than the mean and a 

negative z and a negative z-score indicates that the raw score is lower than the mean. 

3. Results 

3.1. Statistical normality and homogeneity in the study area  

Table 3 below shows that the maximum temperature data for Ouahigouya, Diapaga, Dédougou, 

Ouagadougou, Kaya, and Kouka sites are normally distributed. On the other hand, the Shapiro-Wilk and 

Anderson-Darling statistics imply a lack of normality in the minimum temperature data. 

The temperature data (maximum, minimum) were also subjected to homogeneity tests. The Buishand test 

shows that there is a change in both the maximum and minimum temperature data. The Von Neumann 

test was also applied to the temperature data. Table 4 shows the results of the two homogeneity tests. 

Table 4 shows that temperature data change with the seasons. The change in maximum temperature data 

occurred in 2000 in Diapaga during the rainy season. In Kaya, the changes occurred before, during and 

after the rainy season in 1998, 2006, and 2010 respectively. In Ouahigouya, the change occurred during 

the pre-rainy season, as it did at Fada Gourma and Boromo. In Ouagadougou and Dédougou, however, 

the changes affected both the pre-rainy season and the rainy and post-rainy seasons. Overall, there has 

been an increase in maximum temperatures following the changes that occurred between 1998 and 2010. 

However, there has been very little change in the minimum temperature data. In Diapaga and Fada 

Gourma, the minimum temperature data were disrupted, especially during the wet and humid pre-season 

in 2004 and 1992 in Diapaga.  

In Fada Gourma the change occurred in 1998. The minimum temperature increased significantly in the 

following years. 

3.2. Statistical trends in extreme temperatures in the Sudano-Sahelian zone of Burkina 

Faso 

3.2.1. Analysis of maximum temperature trends using linear regression methods  

The results of the normality test revealed that the maximum temperature data are normally distributed, 

allowing for trend analysis using parametric tests, particularly linear regression. The table below shows the 

seasonal trends over the period 1981-2020 (Table 5).  

40



Table 3. The normality of extreme temperature data. 

Stations Maximum temperature Minimum temperature 
O

ua
h

ig
o

uy
a Period Shapiro-Wilk Anderson-Darling Period Shapiro-Wilk Anderson-Darling 

V1 0.007 0.001 V1 0.571 0.38 

V2 0.627 0.282 V2 0.865 0.53 

V3 0.812 0.850 V3 0.94 0.89 

D
ia

p
ag

a 

Period Shapiro-Wilk Anderson-Darling Period Shapiro-Wilk Anderson-Darling 

V1 0.040 0.067 V1 0.381 0.368 

V2 0.258 0.215 V2 0.482 0.502 

V3 0.236 0.400 V3 0.509 0.661 

D
éd

o
ug

o
u
 Period Shapiro-Wilk Anderson-Darling Period Shapiro-Wilk Anderson-Darling 

V1 0.037 0.026 V1 0.902 0.912 

V2 0.836 0.923 V2 0.762 0.890 

V3 0.237 0.490 V3 0.644 0.558 

O
ua

ga
d

o
ug

o
u
 Period Shapiro-Wilk Anderson-Darling Period Shapiro-Wilk Anderson-Darling 

V1 0.061 0.035 V1 0.949 0.923 

V2 0.126 0.150 V2 0.739 0.829 

V1 0.608 0.802 V3 0.809 0.881 

K
ay

a 

Period Shapiro-Wilk Anderson-Darling Period Shapiro-Wilk Anderson-Darling 

V1 0.068 0.021 V1 0.889 0.866 

V2 0.093 0.049 V2 0.399 0.417 

V1 0.631 0.664 V3 0.944 0.919 

K
o

uk
a 

Period Shapiro-Wilk Anderson-Darling Period Shapiro-Wilk Anderson-Darling 

V1 0.009 0.025 V1 0.884 0.584 

V2 0.736 0.795 V2 0.895 0.685 

V3 0.155 0.220 V3 0.750 0.524 

F
ad

a 
G

o
ur

m
a Period Shapiro-Wilk Anderson-Darling Period Shapiro-Wilk Anderson-Darling 

V1 0.142 0.125 V1 0.177 0.313 

V2 0.286 0.204 V2 0.854 0.952 

V3 0.163 0.201 V3 0.847 0.808 

B
o

ro
m

o
 

Period Shapiro-Wilk Anderson-Darling Period Shapiro-Wilk Anderson-Darling 

V1 0.003 0.006 V1 0.500 0.384 

V2 0.279 0.392 V2 0.332 0.143 

V3 0.073 0.258 V3 0.135 0.147 

Source: Power NASA, 1981-2022, v1 = rainy pre-season; v2 = rainy season; v3 = post-rainy season. 
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Table 4. Homogeneity of extreme temperature data. 

Stations Maximum temperature Minimum temperature 
D

ia
p

ag
a 

Period Buishand 
Von 

Neumann 
Period 
change 

Before After Buishand 
Von 

Neumann 
Period 
change 

Before After 

V1 0.001 0.001 2000 40.17 41.2 0.014 0.316 2004 18.38 19.09 

V2 0.263 0.375 - - - 0.005 0.248 1992 20.75 21.3 

V3 0.182 0.227 - - - 0.500 0.676 - - - 

K
ay

a 

Period Buishand 
Von 

Neumann 
Period 
change 

Before After Buishand 
Von 

Neumann 
Period 
change 

before after 

V1 0.014 0.424 1998 40.21 40.8 0.360 0.242 - - - 

V2 0.021 0.616 2006 37.6 36.6 0.334 0.680 - - - 

V3 0.015 0.418 2010 36.44 35.21 0.061 0.719 - - - 

O
ua

h
ig

o
uy

a Period Buishand 
Von 

Neumann 
Period 
change 

Before After Buishand 
Von 

Neumann 
Period 
change 

before after 

V1 0.001 0.584 1998 40.36 41.1 0.271 0.478 - - - 

V2 0.071 0.876 - - - 0.356 0.522 - - - 

V3 0.270 0.839 - - - 0.139 0.408 - - - 

O
ua

ga
d

o
ug

o
u
 Period Buishand 

Von 
Neumann 

Period 
change 

Before After Buishand 
Von 

Neumann 
Period 
change 

before after 

V1 0.018 0.212 1998 40 40.6 0.485 0.302 - - - 

V2 0.189 0.281 - - - 0.057 0.423 - - - 

V3 0.033 0.304 2010 36.6 35.4 0.063 0.544 - - - 

K
o

uk
a 

Period Buishand 
Von 

Neumann 
Period 
change 

Before After Buishand 
Von 

Neumann 
Period 
change 

before after 

V1 0.300 0.109 - - - 0.294 0.115 - - - 

V2 0.124 0.106 - - - 0.125 0.109 - - - 

V3 0.427 0.159 - - - 0.427 0.166 - - - 

F
ad

a 
G

o
ur

n
m

a Period Buishand 
Von 

Neumann 
Period 
change 

Before After Buishand 
Von 

Neumann 
Period 
change 

before after 

V1 0.004 0.0723 1998 40.04 40.8 0.294 0.040 - - - 

V2 0.28 0.2881 - - - 0.012 0.107 1998 20.70 21.08 

V3 0.064 0.0534 - - - 0.250 0.394 - - - 

B
o

ro
m

o
 

Period Buishand 
Von 

Neumann 
Period 
change 

Before After Buishand 
Von 

Neumann 
Period 
change 

before after 

V1 0.003 0.072 1998 40.74 41.5 0.291 0.039 - - - 

V2 0.278 0.278 - - - 0.012 0.102 2001 20.70 21.08 

V3 0.060 0.057 - - - 0.248 0.398 - - - 

D
éd

o
ug

o
u
 Period Buishand 

Von 
Neumann 

Period 
change 

Before After Buishand 
Von 

Neumann 
Period 
change 

before after 

V1 0.001 0.499 1998 40.7 41.5 0.665 0.147 - - - 

V2 0.010 0,292 2002 36.2 35.2 0.117 0.122 - - - 

V3 0.056 0,222 - - - 0.256 0.129 - - - 

Source: Power NASA, 1981-2022, v1 = rainy pre-season; v2 = rainy season; v3 = post-season rainy. 
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Table 5. Trends in maximum temperatures over the period 1981-2022. 

Stations Seasonal Source Value Standard error t p-value Trend 
O

ua
h

ig
o

uy
a 

V1 
Constant value –3.206 15.719 –0.204 0.839  

Year 0.022 0.008 2.799 0.008** Increasing 

V2 
Constant value 73.201 24.794 2.952 0.005  

Year –0.018 0.012 –1.457 0.153 - 

V3 
Constant value 55.823 27.356 2.041 0.048  

Year –0.010 0.014 –0.706 0.484 - 

D
ia

p
ag

a 

V1 
Constant value –19.877 17.091 –1.163 0.252  

Year 0.030 0.009 3.543 0.001** Increasing 

V2 
Constant value 1.648 23.331 0.071 0.944  

Year 0.017 0.012 1.446 0.156 - 

V3 
Constant value –4.381 28.378 –0.154 0.878  

Year 0.021 0.014 1.459 0.152 - 

D
éd

o
ug

o
u
 

V1 
Constant value –4.358 16.020 –0.272 0.787  

Year 0.023 0.008 2.842 0.007** Increasing 

V2 
Constant value 77.700 24.481 3.174 0.003  

Year –0.021 0.012 –1.711 0.095* Increasing 

V3 
Constant value 85.342 35.031 2.436 0.019  

Year –0.024 0.018 –1.383 0.174 - 

O
ua

ga
d

o
ug

o
u
 V1 

Constant value 9.861 17.620 0.560 0.579  

Year 0.015 0.009 1.732 0.091* Increasing 

V2 
Constant value 52.184 21.930 2.380 0.022  

Year –0.008 0.011 –0.713 0.480 - 

V3 
Constant value 78.357 31.276 2.505 0.016  

Year –0.021 0.016 –1.347 0.185 - 

K
ay

a 

V1 
Constant value 11.060 16.779 0.659 0.514  

Year 0.015 0.008 1.759 0.086* Increasing 

V2 
Constant value 83.043 20.502 4.050 0.000  

Year –0.023 0.010 –2.242 0.031** Increasing 

V3 
Constant value 95.886 29.626 3.237 0.002  

Year –0.030 0.015 –2.019 0.049** Decreasing 

K
o

uk
a 

V1 
Constant value –4.051 16.789 –0.241 0.811 - 

Year 0.022 0.008 2.653 0.011** Increasing 

V2 
Constant value 46.538 23.921 1.946 0.059  

Year –0.006 0.012 –0.495 0.623 - 

V3 
Constant value 79.900 37.371 2.138 0.039  

Year –0.022 0.019 –1.179 0.245 - 

F
ad

a 
G

o
ur

m
a 

V1 
Constant value –14.090 15.291 –0.921 0.362  

Year 0.027 0.008 3.578 0.001** Increasing 

V2 
Constant value 25.302 22.803 1.110 0.274  

Year 0.005 0.011 0.441 0.662 - 

V3 
Constant value 28.307 30.599 0.925 0.360  

Year 0.004 0.015 0.283 0.779 - 

B
o

ro
m

o
 

V1 
Constant value –6.227 17.707 –0.352 0.727  

Year 0.023 0.009 2.638 0.012** Increasing 

V2 
Constant value 46.023 26.669 1.726 0.092  

Year –0.006 0.013 –0.426 0.673 - 

V3 
Constant value 77.123 39.641 1.946 0.059  

Year –0.020 0.020 –1.028 0.310 - 

Source: Power NASA, 1981-2022, ***Significance at 1% level, **Significance at 5% level, Significance at 10% level; -: 

no trend 
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3.2.2. Minimum temperature trends using Mann-Kendall and Spearman’s r tests and Sen’s slope 

estimator 

The minimum temperature trend time series data were examined using the Mann-Kendall (MK), 

Spearman’s r and Sen (SS) slope tests, as the results of the normality test indicated that these data are not 

normally distributed, requiring non-parametric tests for trend analysis. 

• Mann-Kendall trend test and Sen’s estimator of the slope 

Table 6 below shows that, on the whole, the extreme temperatures at the different sites studied do not 

show any trend in the temperature series. However, in Diapaga, Kouka, Fada Gourma, and Dédougou, 

positive trends were observed in the period before the rainy season. On the other hand, negative 

trends before and during the rainy season were observed in Ouahigouya and Kaya. 

Table 6. Trends and amplitudes of minimum temperatures between 1981 and 2022. 

 Minimum temperature 

Diapaga 

Period Kendall’s Tau p-value Sen’s slope 

v1 0.323 0.003 0.032 

v2 0.231 0.032 0.014 

v3 0.089 0.41 0.013 

Kaya 

Period Kendall’s Tau p-value Sen’s slope 

v1 0.151 0.162 0.011 

v2 0.152 0.159 0.009 

v3 –0.148 0.172 -0.021 

Ouahigouya 

Period Kendall’s Tau p-value Sen’s slope 

v1 0.148 0.172 0.016 

v2 0.092 0.398 0.006 

v3 0.089 0.41 0.016 

Ouagadougou 

Period Kendall’s Tau p-value Sen’s slope 

v1 0.096 0.374 0.007 

v2 0.192 0.076 0.012 

v3 –0.124 0.251 -0.018 

Kouka 

Period Kendall’s Tau p-value Sen’s slope 

v1 0.064 0.558 0.005 

v2 0.154 0.153 0.009 

v3 0.036 0.745 0.007 

Fada Gourma 

Period Kendall’s Tau p-value Sen’s slope 

V1 0.250 0.020 0.025 

v2 0.287 0.008 0.016 

v3 0.033 0.770 0.005 

Boromo 

Period Kendall’s Tau p-value Sen’s slope 

v1 0.034 0.762 0.002 

v2 0.272 0.012 0.014 

v3 –0.045 0.680 -0.005 

Dédougou 

Period Kendall’s Tau p-value Sen’s slope 

v1 0.066 0.544 0.007 

v2 0.128 0.237 0.008 

v3 0.002 0.991 0.000 

Source: Power NASA, 1981-2022, v1 = rainy pre-season; v2 = rainy season; v3 = post-season rainy. 
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• Spearman’s r test 

This test was also applied to the temperature data. It was found that the pre-wet season (January to 

May) shows positive trends, with positive correlation coefficients for maximum and minimum 

temperatures in Diapaga, Kaya, Ouahigouya, Ouagadougou, Kouka, Fada Gourma, Boromo and 

Dédougou. During the rainy season, the trend in extreme temperatures is also upward in all the 

locations studied, with a very high degree of significance. However, the minimum temperatures in 

Boromo and Dédougou show no trend between 1981 and 2022. On the other hand, in the period after 

the rainy season, temperature trends are significant over the period 1981-2022. Table 7 below gives 

details by season and month of the extreme temperature trends over the period 1981-2022. 

Table 7. The upward trend in extreme temperatures in Burkina Faso between 1981 and 2022. 

 

Diapaga Kaya Ouahigouya 

Tmin ANN Tmin ANN Tmin ANN 

V1 

JAN 

CC .557** 

V1 

JAN 

CC .388* 

V1 

JAN 

CC .513** 

Sig 0.000 Sig 0.011 Sig 0.001 

N 42 N 42 N 42 

FEB 

CC .441** 

FEB 

CC .418** 

FEB 

CC .364* 

Sig 0.003 Sig 0.006 Sig 0.018 

N 42 N 42 N 42 

MAR 

CC 0.264 

MAR 

CC 0.094 

MAR 

CC 0.283 

Sig 0.091 Sig 0.554 Sig 0.069 

N 42 N 42 N 42 

APR 

CC .393** 

APR 

CC 0.191 

APR 

CC .385* 

Sig 0.010 Sig 0.227 Sig 0.012 

N 42 N 42 N 42 

MAY 

CC .413** 

MAY 

CC .624** 

MAY 

CC .591** 

Sig 0.007 Sig 0.000 Sig 0.000 

N 42 N 42 N 42 

V2 

JUN 

CC .544** 

V2 

JUN 

CC .554** 

V2 

JUN 

CC .310* 

Sig 0.000 Sig 0.000 Sig 0.045 

N 42 N 42 N 42 

JUL 

CC .595** 

JUL 

CC 0.190 

JUL 

CC 0.173 

Sig 0.000 Sig 0.227 Sig 0.274 

N 42 N 42 N 42 

AUG 

CC .455** 

AUG 

CC 0.173 

AUG 

CC 0.091 

Sig 0.002 Sig 0.274 Sig 0.566 

N 42 N 42 N 42 

SEP 

CC .493** 

SEP 

CC .479** 

SEP 

CC .307* 

Sig 0.001 Sig 0.001 Sig 0.048 

N 42 N 42 N 42 

OCT 

CC .395** 

OCT 

CC .327* 

OCT 

CC 0.176 

Sig 0.010 Sig 0.035 Sig 0.264 

N 42 N 42 N 42 

V3 NOV 
CC .455** 

V3 NOV 
CC .388* 

NOV 
CC .313* 

Sig 0.002 Sig 0.011 Sig 0.044 
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N 42 N 42 N 42 

DEC 

CC 0.080 

DEC 

CC .502** 

DEC 

CC .643** 

Sig 0.616 Sig 0.001 Sig 0.000 

N 42 N 42 N 42 

Ouagadougou Kouka Fada Gourma 

Tmin ANN Tmin ANN Tmin ANN 

V1 

JAN 

CC .488** 

V1 

JAN 

CC .563** 

V1 

JAN 

CC .490** 

Sig 0.001 Sig 0.000 Sig 0.001 

N 42 N 42 N 42 

FEB 

CC .496** 

FEB 

CC .376* 

FEB 

CC .502** 

Sig 0.001 Sig 0.014 Sig 0.001 

N 42 N 42 N 42 

MAR 

CC -0.009 

MAR 

CC 0.114 

MAR 

CC 0.198 

Sig 0.957 Sig 0.472 Sig 0.208 

N 42 N 42 N 42 

APR 

CC 0.160 

APR 

CC 0.180 

APR 

CC .370* 

Sig 0.311 Sig 0.254 Sig 0.016 

N 42 N 42 N 42 

MAY 

CC .579** 

MAY 

CC .448** 

MAY 

CC 0.188 

Sig 0.000 Sig 0.003 Sig 0.234 

N 42 N 42 N 42 

V2 

JUN 

CC .469** 

V2 

JUN 

CC 0.274 

V2 

JUN 

CC .433** 

Sig 0.002 Sig 0.079 Sig 0.004 

N 42 N 42 N 42 

JUL 

CC 0.226 

JUL 

CC .361* 

JUL 

CC .468** 

Sig 0.149 Sig 0.019 Sig 0.002 

N 42 N 42 N 42 

AUG 

CC 0.230 

AUG 

CC 0.243 

AUG 

CC .364* 

Sig 0.143 Sig 0.121 Sig 0.018 

N 42 N 42 N 42 

SEP 

CC .457** 

SEP 

CC 0.221 

SEP 

CC .398** 

Sig 0.002 Sig 0.159 Sig 0.009 

N 42 N 42 N 42 

OCT 

CC .357* 

OCT 

CC 0.126 

OCT 

CC .381* 

Sig 0.020 Sig 0.425 Sig 0.013 

N 42 N 42 N 42 

V3 

NOV 

CC .457** 

V3 

NOV 

CC .490** 

V3 

NOV 

CC .380* 

Sig 0.002 Sig 0.001 Sig 0.013 

N 42 N 42 N 42 

DEC 

CC .438** 

DEC 

CC .497** 

DEC 

CC 0.130 

Sig 0.004 Sig 0.001 Sig 0.413 

N 42 N 42 N 42 

Boromo Dédougou         

Tmin ANN Tmin ANN     

V1 JAN 

CC .516** 

V1 JAN 

CC .430**         

Sig 0.000 Sig 0.005         

N 42 N 42 
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FEB 

CC .443** 

FEB 

CC .400**         

Sig 0.003 Sig 0.009 
        

N 42 N 42         

MAR 

CC 0.058 

MAR 

CC 0.112 
        

Sig 0.715 Sig 0.481         

N 42 N 42 
        

APR 

CC .344* 

APR 

CC 0.192         

Sig 0.026 Sig 0.223 
        

N 42 N 42         

MAY 

CC .384* MAY CC .558** 
        

Sig 0.012 Sig 0.000         

N 42 N 42 
        

V2 

JUN 

CC 0.210 

V2 

JUN CC .374*         

Sig 0.181 Sig 0.015         

N 42 N 42         

JUL 

CC 0.168 JUL CC 0.103         

Sig 0.289 Sig 0.517 
        

N 42 N 42         

AUG 

CC 0.298 AUG CC 0.252 
        

Sig 0.055 Sig 0.108         

N 42 N 42 
        

SEP 

CC 0.246 SEP CC 0.240         

Sig 0.117 Sig 0.127 
        

N 42 N 42         

OCT 

CC .558** OCT CC 0.123 
        

Sig 0.000 Sig 0.437         

N 42 N 42 
        

V3 

NOV 

CC .606** 

V3 

NOV CC .497**         

Sig 0.000 Sig 0.001         

N 42 N 42         

DEC 

CC .588** DEC CC .535**         

Sig 0.000 Sig 0.000 
        

N 42 N 42         

Source: Power NASA, 1981-2022, coefficient of correlation = CC. **CC is significant at the 0.01 level (two-tailed), 

*CC is significant at the 0.05 level. 

3.3. Extreme temperature variability in the Sudano-Sahelian domain of Burkina Faso 

In this study, the variability of extreme temperatures was analyzed by moving averages, the anomaly 

method, and the Fligner-Killeen test. 

3.3.1. Analysis of variability in extreme temperatures using moving averages and Fligner-Killeen 

test 

The moving averages show a fluctuating trend in extreme temperatures, reflecting the variability of the 

time series from 1981 to 2022. Overall, there is a four-stage trend in maximum temperatures, with a 

decrease between 1981 and 1998, an increase between 1999 and 2001, a decrease between 2022 and 2011, 
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and an increase between 2012 and 2022. However, the behavior of minimum temperatures is different. 

There is no phase of change, but rather a continuous sawtooth pattern. This means that the variability of 

minimum temperatures is even greater than that of maximum temperatures. The stations close to the 

Sahelian domains (Ouahigouya, Kaya) and the Sudanian domains (Kouka, Boromo) have strong 

fluctuations in minimum temperatures, compared with the stations in Ougadougou, Fada Gourma, and 

Diapaga, which are in the center of the Sudano-Sahelian zone. Figure 2 shows the changes in temperature 

variability between 1981 and 2022 for the selected study regions. In the northeast region, the Kaya station 

was chosen. Similarly, in the north and central regions, the Ouahigouya and Ouagadougou stations were 

chosen because of their different variation. The Dédougou station in the Boucle du Mouhoun region was 

chosen because the other stations (Boromo, Kouka) are similar in terms of temperature variation. The 

same is true for the Fada Gourma station in the eastern region. 

 
Fig. 2a. High variability of extreme temperatures in the Sudano-Sahelian domain of Burkina Faso. 
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Fig. 2b. High variability of extreme temperatures in the Sudano-Sahelian domain of Burkina Faso. 
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These variations are quite large in comparison with the pre-rainy season, the rainy, and the post-rainy 

season (Table 8). 

Table 8. Comparative variability of extreme temperatures for the periods before the rainy season, during the rainy 

season and after the rainy season. 

Source: Power NASA, 1981-2022, v1 = rainy pre-season; v2 = rainy season; v3 = post-season rainy. 

Localities 
Compared 

seasonality 
T Expected T z p (one-tailed): p (two-tailed): Type of temperature 

D
ia

p
ag

a 

v1-v2 50.078 39.092 1.9382 0.026297 0.052595 

maximum temperature v2-v3 43.881 39.092 0.84492 0.19908 0.39816 

v1-v3 56.052 39.092 2.9921 0.0013852 0.0027704 

v1-v2 20.696 39.092 –3.247 0.00058319 0.0011664 

minimum temperature v2-v3 64.955 39.092 4.5629 2.52E-06 5.04E-06 

v1-v3 58.715 39.092 3.4621 0.00026795 0.0005359 

K
ay

a 

v1-v2 49.298 39.092 1.8006 0.035882 0.071765 

maximum temperature v2-v3 50.727 39.092 2.0527 0.020053 0.040106 

v1-v3 57.344 39.092 3.2201 0.00064068 0.0012814 

v1-v2 20.696 39.092 –3.247 0.00058319 0.0011664 

minimum temperature v2-v3 64.955 39.092 4.5629 2.52E-06 5.04E-06 

v1-v3 58.715 39.092 3.4621 0.00026795 0.0005359 

o
u
ah

ig
o
u
ga

 

v1-v2 54.215 39.092 2.668 0.0038155 0.007631 

maximum temperature v2-v3 41.895 39.092 0.49457 0.31045 0.6209 

v1-v3 56.246 39.092 3.0264 0.0012373 0.0024746 

v1-v2 16.224 39.092 –4.0344 2.74E-05 5.47E-05 

minimum temperature v2-v3 64.549 39.092 4.4912 3.54E-06 7.08E-06 

v1-v3 54.952 39.092 2.7981 0.0025699 0.0051399 

O
u
ag

ad
o
u
go

u
 v1-v2 45.533 39.092 1.1364 0.12789 0.25578 

maximum temperature v2-v3 52.662 39.092 2.3941 0.0083303 0.016661 

v1-v3 59.393 39.092 3.5816 0.00017078 0.00034156 

v1-v2 23.671 39.092 –2.7206 0.003258 0.006516 

minimum temperature v2-v3 65.605 39.092 4.6776 1.45E-06 2.90E-06 

v1-v3 60.4 39.092 3.7592 8.52E-05 0.00017046 

K
o
u
k
a 

v1-v2 53.249 39.092 2.4977 0.0062506 0.012501 

maximum temperature v2-v3 54.39 39.092 2.699 0.0034775 0.0069549 

v1-v3 62.319 39.092 4.0978 2.09E-05 4.17E-05 

v1-v2 23.43 39.092 –2.763 0.0028634 0.0057267 

minimum temperature v2-v3 66.219 39.092 4.786 8.51E-07 1.70E-06 

v1-v3 61.193 39.092 3.8993 4.82E-05 9.65E-05 

F
ad

a 
G

o
u
rm

a 

v1-v2 53.892 39.092 2.6114 0.0045088 0.0090176 

maximum temperature v2-v3 51.039 39.092 2.1077 0.017527 0.035054 

v1-v3 61.1 39.092 3.8828 5.16E-05 0.00010324 

v1-v2 18.835 39.092 –3.5737 0.00017597 0.00035194 

minimum temperature v2-v3 66.235 39.092 4.7888 8.39E-07 1.68E-06 

v1-v3 59.158 39.092 3.5401 0.00019998 0.00039996 

B
o
ro

m
o

 

v1-v2 54.152 39.092 2.657 0.0039418 0.0078835 

maximum temperature v2-v3 51.48 39.092 2.1855 0.014425 0.028851 

v1-v3 61.938 39.092 4.0305 2.78E-05 5.57E-05 

v1-v2 24.94 39.09 –2.50 0.0062515 0.012503 

minimum temperature v2-v3 65.59 39.09 4.675 1.47E-06 2.94E-06 

v1-v3 64.52 39.09 2.345 0.000198 0.0003696 

D
éd

o
u
go

u
 

v1-v2 50.34 39.092 2.699 0.0054792 0.0061521 

maximum temperature v2-v3 62.24 39.09 4.08 2.21E-05 4.42E-05 

v1-v3 55.118 39.092 2.8274 0.0023463 0.0046925 

v1-v2 50.061 39.092 1.9353 0.026479 0.052958 

minimum temperature v2-v3 54.94 39.09 2.50 0.0032515 0.032503 

v1-v3 60.694 39.092 3.8111 6.92E-05 0.00013836 
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3.3.2. Analysis of anomalies as a factor in temperature variability in Burkina Faso 

Extreme temperatures are anomalies that develop decade by decade over the period 1981 to 2022. Indeed, 

in the 1980s, especially in 1981, 1982, 1983, and 1987, extreme temperature anomalies (maximum, 

minimum) exceeding z = 1.96 were recorded during the pre-rainy season at all the sites studied. Further 

temperature anomalies occurred in 1994, 1995, and 1998, mainly during the rainy and post-rainy seasons. 

From 2000 onward, the occurrence of extreme temperature anomalies increased significantly: the number 

of years in which anomalies occurred increased over the period 2000-2022, with anomalies occurring in 

2000, 2001, 2002, 2003, 2005, 2009, 2011, 2013, 2015, 2019, and 2021. Extreme temperature anomalies 

occur during the rainy season, the post-rainy season and, to a lesser extent, the pre-rainy season. This 

indicates an increase in temperature variability at the study sites. Figure 3 shows temperature anomalies 

from 1981 to 2022. 

 
Fig. 3. Seasonal anomalies of extreme temperatures in the Sudano-Sahelian zone of Burkina Faso. 

4. Discussion 

4.1. Temperature trends in Burkina Faso and Africa 

The results of the study are quite remarkable. Extreme temperatures (maximum and minimum) show a 

change in the 2000s compared to the period 1981-2022 period. Furthermore, extreme temperatures show 
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an upward trend according to Spearman’s r, regardless of seasonality. Temperature variability was also 

strong and increasing over the period 2000-2022. However, the trends vary from station to station. This 

could be explained by a general variation in rainfall and temperature across the country. Indeed, the area 

occupied by the Sahelian and Sudano-Sahelian domains has increased over time (1931-2010) to the 

detriment of the Sudanese domain (Rouamba 2017). Furthermore, isotherms have also shifted from north 

to south from 1971 to the present day, reflecting temperature dynamics across the country (Dipama 2014). 

Yaméogo and Rouamba (2023) also found an increase and change in maximum temperatures in the 

Sahelian, Sudano-Sahelian, and Sudanese domains over the period 1960-2019. Other studies in the 

Sudano-Sahelian domain (Rouamba et al. 2023) found similar results. Yanogo and Yaméogo (2023) also 

note that temperatures in the Sudano-Sahelian region of Burkina Faso are changing, particularly in the 

2000s over the period 1990-2020. Several other studies carried out in West Africa and Africa as a whole 

corroborate the results of this study. For example, Sanogo et al. (2023) found that maximum temperatures 

in Mali are increasing, but that the trend was also upward for the period 1991-2020. Similar studies have 

confirmed the findings of previous studies. For example, Musa et al. (2021) found an increasing trend and 

high variability in extreme temperatures in north-central Nigeria. Other studies conducted in Nigeria 

(Ogunrayi et al. 2016; Ekwueme, Agunwamba 2021; Dan’azumi, Ibrahim 2023), Mauritania (Yacoub, 

Tayfur 2019), Senegal (Djaman et al. 2017) and Gambia (Jabbi et al. 2021) have made similar observations. 

According to Ilori and Ajayi (2020), extreme temperatures are evolving due to temporal breaks in 

temperature data in the 1980s, which then show an upward trend until 2010. Other regions of Africa are 

affected by changes in seasonal temperature cycles. In East Africa, particularly Ethiopia and South Africa, 

extreme temperatures are increasing (Worku et al. 2022; Chapungu et al. 2024). The same trends have also 

been observed in Central Africa, such as the Democratic Republic of Congo (Posite et al. 2024) and 

Burundi (Niyongendako et al. 2020). The work of Umeh et al. (2024) on 48 African countries shows an 

overall trend toward rising temperatures in all countries except Madagascar and Niger. 

4.2. Seasonal temperature variability in Burkina Faso and West Africa  

Maximum and minimum temperatures show inter-seasonal variability in the eight (08) stations in the 

Sudano-Sahelian region. This could be explained by the fact that in the arid tropical region of Africa where 

Burkina Faso is located, temperature is modulated by rainfall. Thus, the temperature is very high as the 

rainy season approaches, then moderately high during the rainy season, and the temperature drops just 

after the rainy season, i.e., in November, December, and January. This situation could influence the 

seasonal variability of extreme temperatures. In addition, in other studies in Burkina Faso, Yaméogo and 

Rouamba (2023), and Koala et al. (2023a), add that seasonal variability in maximum temperatures is 

observed across the country. Koala et al. (2023b) predict that a continuous trend in temperature variability 

in the Sudano-Sahelian zone (from the Nakambè catchment) will continue until 2050. Studies carried out 

in West Africa confirm these results. In Nigeria, maximum, minimum, and mean temperatures in the 

Niger basin over the period 1948-2008 (Oloruntade et al. 2016), as well as in the coastal region of Nigeria 

(Agbonaye, Okonofua 2024), have been rising steadily. In Mali and northern Togo they increased over the 

52



period 1951-2010 (Kouressy et al. 2019l; Gadedjisso-Tossou et al. 2021). According to Ringard et al. 

(2016) and Asamoah and Ansah-Mensah (2020), there has been an increase in extreme variability across 

the West African region (Sahel and Gulf of Guinea). There has also been an increase in extreme 

temperature anomalies. The various results show a general increase in temperatures, interspersed with a 

high-temperature variability according to season (wet and dry). This seasonal temperature variability 

results from the hydrological cycle (Diba et al. 2022). 

5. Conclusion 

Temperature extremes in the Sudano-Sahelian region of Burkina Faso were analyzed using normality, 

homogeneity, trend, and anomaly statistics. The normality tests showed that the maximum temperature 

data generally followed a normal distribution, while the minimum temperature data did not follow a 

normal distribution. Homogeneity tests of the temperature data reveal temperature breaks in the 2000s 

before, during, and after the rainy season for maximum temperature data. However, minimum 

temperatures showed little change. The study shows that temperatures change seasonally, with maximum 

temperatures changing more markedly than minimum temperatures during the pre-rainy season, the rainy 

season, and the post-rainy seasons. Temperatures are also highly variable, with anomalies observed in the 

pre-rainy season, the rainy season, and the post-rainy season in the 2000s. Local and regional authorities 

must, therefore, take urgent action to protect vulnerable groups. 
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Abstract 

In Antarctica, studying the near-surface wind regime is important because its dynamics directly affect the continent’s ice shelves. The 

near-surface wind is also important for analyzing global and regional climate. Vernadsky Station has a fairly long observation series of 

near-surface wind speed. These data are widely used to research changes, variability, and trends in the near-surface wind regime on the 

Antarctic Peninsula. The observation series, however, has gaps and incorrect values associated with periodical updates of 

measurement devices. Thus, the observation data require careful evaluation of homogeneity and stationarity. The objective of this 

study was to investigate the homogeneity, stationarity, and tendencies of the near-surface wind speed in the area of the Vernadsky 

Station based on a combined approach using several statistical and graphical methods. The methods’ diverse properties support more 

robust estimates. Consequently, five statistical tests (standard normal Alexandersson test, Buishand test, Pettitt test, von Neumann 

relation, and Mann-Kendall test) and three graphical methods (chronological graph, mass curve, and residual mass curve) were 

employed. Most of the observation series is homogeneous and stationary, except the mean annual and February mean monthly near-

surface wind speeds, which display both decreasing and increasing phases in their long-term cyclical fluctuations, which are 

continuing. Violation of homogeneity and stationarity results from the comparison of different phases of cyclic fluctuations (decrease 

and increase), which have different statistical characteristics. We show that over the past 20 years at the station, the near-surface wind 

speed has tended to increase in all months of the year. 
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1. Introduction 

In Antarctica, the near-surface wind (NSW) regime is no less important than changes in the air temperature; 

both of these characteristics are used to analyze the state of the global and regional climate (Parish, Cassano 

2001; Ramesh, Soni 2018). NSW in the coastal zone and over continental Antarctica is partially related to 

atmospheric circulation and its intensity (Tymofeyev et al. 2017; de Brito Neto et al. 2022). Therefore, 

changes in the NSW regime reflect changes in the climate system over all of Antarctica. Spence et al. (2014), 

Hazel (2019), and Alkama et al. (2020) showed that changes in the NSW regime around Antarctica affect the 

continent’s ice shelves. Thus, in the NSW regime, there is a decrease in the magnitude of easterly and 

southerly wind components and an increase in the magnitude of the westerly wind component. Because the 

westerly winds,  generally of marine origin, are warmer, there is greater heat transfer to the floating glaciers of 

Antarctica and, accordingly, melting of the ice sheets. The latter effect contributes to global sea level rise. 

Some studies assess the potential of Antarctic flows to generate wind energy (Yu et al. 2020; Wang et al. 

2023), and it has been shown that the strongest winds on Earth close to sea level are formed over Antarctica 
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at coastal sites in Adélie Land (Parish 1988; Turner et al. 2009). However, the low air temperatures make 

working there difficult for man and machine alike (Yu et al. 2020).  

Usually, in Antarctica, changes and trends in NSW are studied through observations from meteorological 

stations and through reanalysis (Tymofeyev et al. 2017; Dong et al. 2020). Although observations yield 

reliable information about the characteristics of the wind in specific places in Antarctica, the data contain 

gaps and incorrect values. The number of gaps, in relation to the total length of the data series, are, however, 

generally few. For example, at the Vernadsky Station, missing data are approximately 0.07% of the total 

(Tymofeyev et al. 2017). Gaps in the data record may be caused by interruptions in observations due to the 

replacement, repair, and adjustment of equipment. Incorrect values may be related to both human errors in 

recording and the difficulties of conducting instrumental observations in harsh weather conditions. In 

addition, research stations are predominately located near the Antarctic coasts, which results in fewer 

observational data records for studying the central part of the continent. Reanalysis of data makes it possible 

to obtain a spatial distribution of the NSW, however, mitigating certain limitations of the observational data. 

While this approach generalizes and simplifies the characteristics of the NSW, it does allow for obtaining its 

general tendencies (Turner et al. 2009).  

At the Vernadsky Station, the NSW regime is shaped by regional features such as the local foehn winds, 

which are generated in the mountains of the Antarctic Peninsula (King, Turner 1997). Many researchers use 

the observational data from this station to investigate the changes, variability, and tendencies of the NSW 

regime (van Lipzig et al. 2004; Turner et al. 2009; Tymofeyev et al. 2017; Dong et al. 2020; Andres-Martin et 

al. 2024). For example, van Lipzig et al. (2004) modeled the NSW regime over the Antarctic Peninsula, 

including data from observations from the Vernadsky Station. Turner et al. (2009) reported that since the 

1950s, one of the greatest statistically significant increases in the NSW speed has been in the area of the 

Vernadsky Station. Tymofeyev et al. (2017) reported that, according to the data from the Vernadsky Station, 

an increase in the NSW speed is seen under conditions of increased air temperature, which is a manifestation 

of climate change in the study region. This phenomenon reflects changes in atmospheric circulation, primarily 

the strengthening of the westerly wind and increase of cyclogenesis in the Antarctic. Statistical inhomogeneity 

in the wind speed series was revealed. Dong et al. (2020) reported that six recent global reanalysis products 

show positive trends in the annual and summer wind speeds for the 1980-2018 period, which are linked with 

positive polarity of the southern annular mode. It should be noted that observational data from the 

Vernadsky Station were also used as input to the reanalysis. Andres-Martin et al. (2024) reported that the 

observed annual trends in the NSW speed exhibit a generally positive trend, marked by a strong seasonal 

variability at the northern Antarctic Peninsula.  

The Vernadsky Station NSW speed data require careful assessment of homogeneity and stationarity. Such 

analysis is also needed in view of climatic changes, which can cause violations of the homogeneity and 

stationarity of observational series. In previous studies (Tymofeyev et al. 2017; Andres-Martin et al. 2024), the 

NSW homogeneity, stationarity, and tendencies at the Vernadsky Station were analyzed exclusively by 

statistical tests. Kundzewicz and Robson (2000; 2004) recommended applying more graphical analysis to 
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confirm the results of evaluating the tendencies of time series by standard statistical tests. Graphical analysis 

is especially important when statistical analyses do not have unambiguous interpretations or when only one 

statistical test (or several statistical tests with the same properties) is used (Robson 2002). So, for more reliable 

results, a complex approach using various tests and methods is recommended (Kundzewicz, Robson 2004; 

Gorbachova et al. 2022).  

A significant amount of research is devoted to statistical analysis of time series. Much scientific interest was 

sparked by the monograph of Box and Jenkins (1970), in which the methodological foundations of time 

series analysis in various fields, such as economics, natural sciences, etc., were developed. The most 

widespread methods for assessing the homogeneity and stationarity of an observational series are various 

parametric and non-parametric statistical criteria (tests) described and recommended by WMO guidelines 

(WMO 1990; 2018). Criteria such as the Alexandersson, Terry, Buishand, Pettitt, Spearman, von Neumann, 

Wald-Wolfowitz, and Mann-Kendall tests are the most widely used.  

Graphic analysis of the homogeneity and stationarity evaluation of observation series is based on various 

graphs, such as correlation (x/y plot), histogram, mass curve, double mass curve, residual mass curve, and 

chronological graph. Among these, mass curve analysis, double mass analysis, and residual mass curve are the 

most widely used. Klemeš (1987) and Gorbachova (2016) reported that at the end of the 19th and during the 

20th century, these methods were developed by W. Rippl, A. Schoklitsch, J. Novotny, C. Merriam, M. 

Kohler, L. Weiss and W. Wilson, J. Searcy and C. Hardison, and K. Ehlert. The methods of the mass curve 

and residual mass curve were developed by Rippl (1883). Subsequently, Schoklitsch (1923) and Novotny 

(1925) proposed to calculate the residual mass curve of the mean flow value (Klemeš 1987). In 1937, Merriam 

invented a double mass curve for flow analysis, combining precipitation and river flow information. Kohler 

(1949) proposed using the slope coefficient of the double mass curve to correct violations of the 

homogeneity of a series of precipitation observations. Weiss and Wilson (1953) investigated the estimation of 

significance of change in the double mass curve slope. Searcy and Hardison (1960) developed a fundamental 

method for analysis of time series based on the use of a double mass curve and a residual mass curve for 

homogeneity analyses of observation series of precipitation, hydrologic flows, and sediment flow. Ehlert 

(1972) presented a modified version of the double residual mass curve in which the relative accumulation of 

deviations derives from the mean of two observation series, used to homogenize the precipitation 

observation series. In these investigations, methodological recommendations for applying each approach 

separately and for solving a separate task were developed. More recent approaches to assessing the 

homogeneity and stationarity of observation series using graphical methods have been developed by 

Gorbachova (2014; 2016), and applied to analyses of hydrometeorological observation series (Gorbachova et 

al. 2018; 2022; Romanova et al. 2019; Zabolotnia et al. 2019; 2022; Khrystiuk, Gorbachova 2023). 

The objective of this paper is to investigate the homogeneity, stationarity, and tendencies of NSW speed at 

the Vernadsky Station based on a combined analytical approach, one consisting of the use of several statistical 

and graphical methods. These methods are described in Section 2, while in Section 3 they are applied in 

analyses of the data.  
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2. Study area, data, and methods 

2.1. Study area 

Until 1996, the Vernadsky Station was the British Faraday station. On February 6, 1996, the British flag was 

solemnly taken down, and the flag of Ukraine was raised. The Vernadsky Station is located off the western 

coast of the Antarctic Peninsula on Galindez Island, Argentine Islands Archipelago (Fig. 1), at coordinates 

65.25°S, 64.27°W. The climate is marine subarctic, dominated by large-scale circumpolar circulation in the 

atmosphere and ocean (King, Turner 1997). 

 

Fig. 1. Location of the Vernadsky Station (background graphic from Klok, Kornus 2021). 

The mountains of the Antarctic Peninsula and the meridional orientation of its coastline are the chief 

influences on NSW and air temperature regimes in the area of the Vernadsky Station (Turner et al. 2009). As 

a result, these regimes are specific to the locality, a matter discussed in detail by Gorbachova et al. (2022), 

Khrystiuk et al. (2023), and Shpyg et al. (2024).  

2.2. Data 

In this study of the period 1955-2022 at the Vernadsky Station, the NSW speed data (10 m above ground) for 

eight measurements per day (0, 3, 6, 9, 12, 15, 18, 21 UTC) were provided by the state institution National 

Antarctic Scientific Center, Ukraine (NASC). Over the life of the Vernadsky Station, various instruments and 

complexes have been used to measure NSW speed. From 1955 to 1966 a Munro Mk. 1 indicator was used to 

measure wind speed, followed from 1967 to January 1976 by a Munro Mk. 1B indicator.  

Since February 1976, a Munro Mk. 4A indicator has been installed at the station, and in March 1980 it was 

transferred to a new weather mast. During January 10-24, 1984, an automatic meteorological station SCAWS 

(Synoptic and Climatological Automatic Weather Station) was installed and tested, and on January 1, 1986, it 

began to be used in operational mode; that is, this date must be considered the date of the device update. In 

December 1990, the MAWS (Modular Automatic Weather Station) automatic weather station was installed 
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and on April 1, 1992 began to be used in operational mode. Since February 20, 2011, a Ukrainian-made 

Mobile Meteorological Complex (MMC), “Troposphere” (Mobile AWS “Troposphere”), became the main 

measuring complex at Vernadsky Station. In February 2019, MAWS was dismantled, and a Vaisala AWS-310 

automatic weather station was installed, which began working in test mode. Measurements from MMC 

“Troposphere” continue to be sent to the data exchange system of the World Meteorological Organization. 

On April 1, 2020, the official transition to the Vaisala AWS-310 automatic weather station was made, and it 

became the main source of meteorological data for the international exchange system (i.e., formation of 

WMO SYNOP and CLIMAT summaries). Currently, MMC “Troposphere” works as a reserve. So, the 

Vernadsky and record of NSW speed contains gaps incorrect values resulting from frequent replacement of 

equipment.  

Therefore, the Vernadsky NSW speed data were checked for missing values and gross errors. This process 

involved two stages: a semantic check and a review of the data based on parameters of the meteorological 

values. The semantic check was done to identify cases when year, month, date, time, and values of NSW 

speed were missing using the British Antarctic Survey database; it included searching for missing 

measurement record identifiers (e.g., values of –99.9). Furthermore, a more detailed analysis of the series of 

observations revealed the presence of several types of errors, with examples as follows: 

− Explicit errors in recording the meteorological value. These are revealed when a value goes beyond the 

data range obtained over the entire period of observation, or when a value is significantly greater than the 

nearest two measurements. 

− Implicit (hidden) errors. These are identified when the value of the meteorological quantity seems correct 

by itself, but the value appears erroneous in the context of another additional meteorological quantity or 

quantities. For example, a wind speed value is zero, but a wind direction value is reported (i.e., has values 

from 1° to 360°). 

2.3. Methodology 

The homogeneity, stationarity, and trends of the NSW speed series at the Vernadsky Station were evaluated 

with a combined approach comprising five statistical and three graphical methods. Statistical homogeneity 

means that the statistical properties of any one part of an overall dataset are the same as any other part 

(WMO 1990). Homogeneity was tested by two parametric (standard normal Alexandersson, Buishand) and 

two non-parametric (Pettitt, von Neumann relation) methods. Stationarity of the observation series means 

that its statistical characteristics do not change over time. In stationary time series, there is no trend in the 

mean or variance over time (WMO 1990). In this study, establishing the trend equation for the time series 

and correlation coefficients between variables were determined by the Pearson method. The statistical 

significance of the trend was evaluated using the non-parametric Mann-Kendall test. 

The series was processed using RStudio Software 1.4.1717 with the following functions (R Core Team 2017):  

− pettitt.test – Pettitt test;  

− br.test – Buishand test; 
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− snh.test – standard normal Alexandersson test; 

− VonNeumannTest – von Neumann relation; 

− MannKendall – Mann-Kendall test; 

− gml – construction of a linear trend;  

− cor.test – determination of the correlation coefficient by the Pearson method. 

Graphical methods make it possible to trace trends over time and identify periods of change, if any, to 

analyze cyclic fluctuations and their characteristics (e.g., phases of increase and decrease, their duration, 

synchronicity, and phasing). Three graphical methods were used in this research: mass curve, residual mass 

curve, and chronological graph. A mass curve is a graph of cumulative values of hydrometeorological 

characteristics, which, under constant conditions, is a straight line with a slope, relative to the abscissa axis, 

that is constant over time. The deviation of the hydrometeorological characteristic from a straight line on the 

graph is an indicator of change that implies change in the controlling factors, e.g., a change in the climate 

regime (Gorbachova 2014; Gorbachova et al. 2022). Short- and long-term cyclical fluctuations can be 

investigated by the residual mass curve. The residual mass curve is a graph of successively accumulated 

deviations of a hydrometeorological value from its initial value, for example, an arithmetic mean, depending 

on time or dates (Gorbachova et al. 2022). The chronological graph allows one to trace the changes and 

fluctuations of a hydrometeorological characteristic over time.  

3. Results 

3.1 Primary analysis of observational data 

For the period 1955-2022 at Vernadsky Station, the observational data for NSW speed contains 198,696 

points, of which 27,377 (almost 14% of the total number) have gaps and incorrect values (Fig. 2). Gross 

mechanical errors and significant outliers in the observation series were removed.  

Most of the data that were considered erroneous and excluded from the research series in the period of 2014-

2019 related to incorrect operation of the software, which occurred at low wind speeds and when wind 

changed direction through the 360° mark. The annual average number of observations is 2966. The largest 

number of gaps and incorrect values in the observations (1064) occurred in 1955, and the smallest number 

occurred in 2006 (2) (Fig. 2). There was also a significant number of gaps and incorrect values in the 

observations in 2019 (1108).  

Based on eight measurements per day (viz., measurements every three hours), daily averages and mean 

monthly and mean annual values of the NSW speed were calculated. Mean monthly values of the NSW speed 

were not calculated for those months in which the number of missing records in the observations was 33% 

or more of the total number of records, where there were no observations for three consecutive days or 

more, or where there were 10 or more missing records in the observations at a given observation time (i.e., 0, 

3, 6, 9, 12, 5, 18, or 21 UTC). Mean annual values of the NSW speed were not calculated for those years in 

which mean monthly values were not determined for four months of the year or if mean monthly values were 

not determined for two or more consecutive months in the year. 
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Fig. 2. The number of gaps and incorrect values (missing records) of observation series of the near-surface wind speed 

in the area of the Vernadsky Station in 1955-2022. 

After data quality control, it turned out that even though the total duration of observation was 68 years, the 

mean duration of all of the records was only 49 years. The longest record of NSW speed has observations for 

58 years (September), and the shortest record for 39 years (mean annual NSW speed) (Fig. 3).  

During the observation period, the mean annual values of NSW speed ranged from 3.5 to 6.1 m/s. The 

multi-annual NSW speed is 4.8 m/s. The highest multi-annual mean monthly NSW speed was observed in 

September (6.0 m/s), and the lowest in January (3.6 m/s). The lowest mean monthly value of NSW speed 

was observed in June 1997 (1.7 m/s), and the highest in October 1955 (9.3 m/s). 

 

Fig. 3. Observation periods and durations for near-surface wind speed in the area of the Vernadsky Station for the 

period 1955-2022. 
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3.2. Statistical analysis 

Applying the four statistical tests at the 1% level of significance to assess the homogeneity of mean annual 

values of NSW speed in the area of the Vernadsky Station showed that all of the annual values indicated a 

violation of homogeneity in 1998, when the values of their statistics exceeded the critical values (Table 1). 

Therefore, the series of mean annual values of NSW speed in the area of the Vernadsky Station is 

inhomogeneous. Along with this, however, the tests indicate homogeneity of mean monthly values, which did 

not exceed critical values of the statistics of two or more tests for any month of year (Table 2). Thus, the 

series of mean monthly values is homogeneous, but the series of mean annual values is inhomogeneous. This 

is a contradictory result. 

In addition, the tests show years in which trends in the mean monthly NSW speeds possibly change. 

However, for most months, the years of change, according to various tests, do not coincide, a finding that 

also fails to illuminate the multi-year NSW speed trends. For example, in February, the year of change is 

2001, according to the Buishand test, and 1998 according to the Pettitt test. It can be assumed that such 

ambiguous results depend on the properties, features, and characteristics of the statistical tests themselves and 

result from the different durations of observation series with their many missing records (Figs. 2, 3). 

Table 1. Results of tests of homogeneity of mean annual near-surface wind speed in the area of the Vernadsky Station 

according to statistical tests at the 1% level of significance. 

Test The value of statistic Critical value Year of disturbance of homogeneity p-value 

Alexandersson 14.9 11.2 1998 0.0009 

Buishand 2.01 1.76 1998 0.0003 

Pettitt 271 251 1998 0.0008 

von Neumann 1.30 1.33->2.00 - 0.0000 

Table 2. Results of testing homogeneity of mean monthly near-surface wind speed in the area of the Vernadsky Station 

according to statistical tests at the 1% level of significance 

Test  Alexandersson test Buishand test Pettitt test von Neumann relation 

January 

Year of homogeneity disturbance 1990 1990 1990 - 

The value of statistics 6.79 1.33 172 2.12 

p-value 0.1202 0.1650 0.1081 0.5287 

February 

Year of homogeneity disturbance 2010 2001 1998 - 

The value of statistics 9.79 1.75 222 1.33 

p-value 0.0226 0.0103 0.0303 <0.0001 

March 

Year of homogeneity disturbance 1957 2003 2003 - 

The value of statistics 6.66 1.54 217 1.80 

p-value 0.1341 0.0580 0.2181 0.0024 

April 

Year of homogeneity disturbance 2005 1997 1997 - 

The value of statistics 8.07 1.63 294 1,85 

p-value 0.0674 0.0335 0.0788 0.0106 
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Test  Alexandersson test Buishand test Pettitt test von Neumann relation 

May 

Year of homogeneity disturbance 2005 1998 1998 - 

The value of statistics 6.35 1.37 258 1.93 

p-value 0.1638 0.1481 0.0582 0.1839 

June 

Year of homogeneity disturbance 1956 2007 2007 - 

The value of statistics 6.12 1.60 189 1.67 

p-value 0.1792 0.0369 0.3724 <0.0001 

July 

Year of homogeneity disturbance 1974 1974 1974 - 

The value of statistics 5.62 1.23 191 1.81 

p-value 0.2264 0.2848 0.3230 0.0053 

August 

Year of homogeneity disturbance 1989 1989 2000 - 

The value of statistics 1.89 0.89 106 1.99 

p-value 0.8984 0.7773 0.8733 0.5336 

September 

Year of homogeneity disturbance 2012 2005 2005 - 

The value of statistics 6.13 1.63 208 1.72 

p-value 0.1888 0.0342 0.5408 <0.0001 

October 

Year of homogeneity disturbance 1964 1976 1976 - 

The value of statistics 9.78 1.69 236 1.61 

p-value 0.0303 0.0218 0.2782 <0.0001 

November 

Year of homogeneity disturbance 2009 2009 2009 - 

The value of statistics 10.7 1.79 249 1.61 

p-value 0.0136 0.0089 0.1722 <0.0001 

December 

Year of homogeneity disturbance 2004 2004 2004 - 

The value of statistics 6.70 1.53 173 1.60 

p-value 0.1221 0.0534 0.1572 <0.0001 

Note: Statistical values that exceed critical values are in bold. 

The Mann-Kendall test was one of the tests used to assess the stationarity of the NSW speed series at the 

Vernadsky Station. The analysis of results shows that significant trends at the 1% level are found for only two 

series, namely, mean monthly values for February and mean annual values (Table 3). The mean annual values 

series is non-stationary, while the mean monthly values series from which this series is calculated is stationary. 

This result is also illogical and contradictory, like the previous finding obtained from the assessment of 

homogeneity of the series of NSW speed observations. 

In general, when evaluating record homogeneity and stationarity, difficulties arise with the interpretation of 

results, since it is impossible to unambiguously establish the long-term tendencies and changes. That is why 

homogeneity and stationarity were further assessed by graphic methods. 
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Table 3. Results of tests of stationarity of the near-surface wind speed series according to the Mann-Kendall test at a 

significance level of 1%, the Vernadsky Station. 

Near-surface wind speed Trend equation τ р-value 
Statistical significance 

of trend 

Mean annual  у = 0.03·х – 53.2 0.491 <0.0001 yes 

January у = 0.02·х – 34.8 0.192 0.0918 no 

February у = 0.03·х – 64.6 0.289 0.0950 yes 

March у = 0.004·х – 2.80 0.089 0.3441 no 

April у = 0.01·х – 19.1 0.114 0.2322 no 

May у = 0.02·х – 45.5 0.204 0.0435 no 

June у = -0.003·х + 10.0 –0.040 0.9666 no 

July у = -0.01·х + 16.3 –0.024 0.8156 no 

August у = 0.01·х – 12.7 0.072 0.5088 no 

September у = 0.003·х – 0.07 0.002 0.9893 no 

October у = -0.01·х + 22.1 –0.040 0.6787 no 

November у = 0.01·х – 9.90 0.066 0.4945 no 

December у = 0.02·х – 28.1 0.144 0.1955 no 

Note: τ is a statistic used to measure the ordinal association between near-surface wind value and time.  

3.3. Graphical analysis 

The chronological graph of the mean annual NSW speed shows a turning point in 1998, which confirms the 

inhomogeneity and non-stationarity of this series according to statistical tests (Fig. 4, Tables 1, 3). At the 

same time, the mass curve shows that the cumulative values do not deviate from a straight line, which 

indicates homogeneity of mean annual NSW speed (Fig. 5).  

 

Fig. 4. Chronological graph of the mean annual near-surface wind speed in the area of the Vernadsky Station. 
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Fig. 5. Chronological graphs of the mean monthly values near-surface wind speed for individual months in the area of 

the Vernadsky Station. 

Analysis of the residual mass curve of mean annual NSW speed showed that in 1998, there was a transition 

from a decrease to an increase (Fig. 5). At the same time, the beginning of the decreasing phase cannot be 

clearly determined by the residual mass curve of the mean annual NSW speed, since there are many missing 

records. Similarly, it is impossible to determine the end of the increasing phase, which continues to the 

present. 

According to the graphical analysis, the mean monthly series are mostly homogeneous and stationary. The 

chronological graphs of the mean monthly NSW speed thus show no changes in the observation series, 

except for the month of February (Fig. 5).  
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Fig. 6. Mass curves (left) and residual mass curves (right) of mean monthly near-surface wind speed for individual 

months in the area of the Vernadsky Station. 

This result coincides with the results obtained by statistical tests (Tables 1, 2). At the same time, the mass 

curves of monthly NSW speed do not show deviations from a straight line, which indicates the homogeneity 

of these series of observations (Fig. 6 – left). The residual mass curves of mean monthly NSW speed indicate 

short- and long-term cyclical fluctuations (Fig. 6 – right). Non-stationarity of the mean monthly series for 

February, which is the same as for the mean annual observation series (per the Mann-Kendall statistical test, 

Table 3), is only due to the decreasing and increasing phases of long-term cyclic fluctuations (Fig. 6). 

Therefore, the February series is quasi-stationary. The observation series for other months are stationary 

because they contain both decreasing and increasing phases, as well as the final or initial phases of adjacent 

cycles. In all months of the year, there has been a tendency of an increasing near-surface wind speed at the 

Vernadsky Station during the past 20 years. 
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4. Discussion 

Even at the end of the 19th century, the German scientist Eduard Brückner studied the cyclical fluctuations 

of the climate and proposed the 35-year-long Brückner cycle of cold, damp weather alternating with warm, 

dry weather in northwestern Europe (Stehr, Storch 2000). Throughout the 20th century, research into 

hydrometeorological quantities’ fluctuations and changes over time was conducted using various approaches 

and methods. Many investigations have shown that short- and long-term cycles of different durations are 

observed in time series of atmospheric precipitation, air temperature, and river flow throughout the world 

(Gorton 1931; Karl 1988; Pekárová et al. 2003; Nidzgorska-Lencewicz, Czarnecka 2019; dos Santos et al. 

2023). 

Our study shows that NSW speeds, both mean annual and mean monthly, in the area of the Vernadsky 

Station have short- and long-term cyclical fluctuations. Pekárová et al. (2003) reported that in the different 

phases of cyclic fluctuations of hydrometeorological characteristics, there are observed tendencies that have 

different signs. So, the decreasing phase has values of hydrometeorological parameters significantly lower 

than the values observed in the increasing phase. This pattern results in differences in the mean values for 

these phases of cyclic fluctuations. Therefore, an observation series that has only decreasing and increasing 

phases of long-term cyclical fluctuations is classified as non-homogeneous and non-stationary by the 

statistical tests. This is exactly the result obtained by the statistical tests for the observation series of the mean 

annual and February mean monthly NSW speeds in the area of the Vernadsky Station. At the same time, this 

result is influenced by a short series of observations, since the series of observations in other months are 

longer and partially cover the adjacent cycles of long-term cyclical fluctuations. The observation series of the 

mean annual and February mean monthly NSW speeds have both decreasing and increasing phases, although 

these series are unfinished (i.e., they continue). So, such series must be classified as quasi-stationary. That is 

why, for such series, it is important to periodically repeat the analyses. A combined application of statistical 

and graphic methods, as we have applied here, will support more reliable estimates of homogeneity, 

stationarity, and tendencies of observation series.  

5. Conclusions 

At the Vernadsky Station, measurements of NSW speed were checked for missing records (e.g., those 

resulting from mechanical problems). The analysis showed that a significant part of the data contains errors, 

and these may be especially relevant for some years. Subsequently, incorrect data were removed from the 

study. Thus, new series of statistically reliable data for mean annual and mean monthly NSW speeds for the 

period 1955-2022 were generated. As a result of this data editing, the series obtained for individual months 

were of different durations. For example, the resulting series for September had the longest duration (58 

years), and the series of annual mean NSW speed had the shortest duration (39 years).  

The series of mean annual and February mean monthly NSW speeds are quasi-homogeneous and quasi-

stationary since they only have the phases of decrease and increase for long-term cyclic fluctuations. The 

other series of NWS speed observations are homogeneous and stationary. Where the Vernadsky NWS speed 

series lack homogeneity and stationarity, according to statistical tests, it is caused by comparing the different 
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phases of cyclic fluctuations (i.e., decreasing and increasing phases), which have different statistical 

characteristics. 

During the past 20 years at the Vernadsky Station, according to the residual mass curves, NSW has an 

increasing tendency in all months of the year. Similar results were obtained in several previous papers (Turner 

et al. 2009; Dong et al. 2020; Andres-Martin et al. 2024). The multi-annual NSW speed is 4.8 m/s. The 

highest multi-annual mean monthly NSW speed was observed for September (6.0 m/s), and the lowest was 

observed for January (3.6 m/s).  

We emphasize that using a combination of statistical approaches as applied in this analysis allows more robust 

results and could be applied to other hydrometeorological variables or characteristics.  
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Abstract 

The severity of hurricanes and cyclones in Mexico increases each year. A key area of research represents the development of a 

mathematical model to predict their tracks and points of impact. The IBTrACS database contains data on hurricanes and tropical 

cyclone tracking; it is the most comprehensive global collection of tropical cyclones. This database was developed in collaboration 

with all Regional Specialized Meteorological Centers of the World Meteorological Organization (WMO). Using the track, wind 

speed, and atmospheric pressure data for each of the hurricane and cyclone occurrences from 1851 to 2022, probabilistic type I 

extreme value models were applied to extreme winds and atmospheric pressure. With the help of a simple Bayesian model the 

probabilities were computed of a hurricane or cyclone with wind of a certain magnitude occurring at a given latitude and 

longitude; an event occurs when specified atmospheric pressure conditions are met. The data collected correspond to the area 

between west longitudes 115.5° and 85° and north latitudes 10° and 32°. This database can be managed, in the future, for the 

forecast of hurricane and cyclone tracks. 
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1. Introduction 

The impact of hurricanes in coastal regions is a significant threat to human life, urban infrastructure, and 

economic stability, particularly in vulnerable areas with high population density. In recent decades, 

hurricanes Pauline [1997], John [1978], and more recently, Otis [2023] have caused significant destruction 

to the port of Acapulco, Mexico, resulting in substantial human casualties, forced displacement, and 

economic devastation. The intensity of these events is not solely attributable to the strength of the winds 

or the amount of precipitation, but also to structural factors such as unplanned urban expansion, the 

fragility of the electrical system, and the lack of institutional preparedness (Hallegatte et al. 2018; Simpson 

et al. 2023). Recent studies on hurricanes with similar impacts, such as Sandy [2012] in the United States 

and Dorian [2019] in the Bahamas, have allowed more accurate modeling of the relationship between 

storm size, wind speed, and resulting economic losses. For instance, Collins et al. (2021) demonstrated 

that economic damages are influenced by factors beyond maximum sustained wind, including tropical 

storm wind radius, sea level, and territorial exposure. These quantitative approaches have been validated 

using Bayesian methods and machine learning models. This validation process has revealed the complexity 

of damage attribution (Chavas et al. 2016; Geiger et al. 2018). Additionally, compound events, such as 

“hurricane-blackout-heat wave,” are emerging as new forms of systemic risk in urban and coastal areas. 
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Research on vulnerable electrical systems in Gulf of Mexico and Southeast Asian regions has elucidated 

this phenomenon, demonstrating but I’m that the loss of electrical power exponentially increases the risk 

to public health during and after tropical cyclones (Feng et al. 2025; Lewis 2022). This phenomenon was 

evident after Otis passed through Acapulco, where communication and medical care systems collapsed for 

more than 72 hours. From a socioeconomic perspective, disasters such as Pauline and Otis should be 

understood as “socially constructed disasters,” where poverty, urban planning, and institutional weakness 

amplify the damage caused by natural phenomena. The work of Koks et al. (2019) demonstrates that 

indirect effects, such as job losses, school disruptions, and forced migration can exceed the direct losses 

estimated by insurers and governments. Due to the increased frequency and intensity of extreme weather 

events exacerbated by climate change, there is an urgent need to develop a comprehensive risk 

management strategy that incorporates climate monitoring, resilient land use planning, and improved rapid 

response systems. More robust approaches to hurricane risk management are being proposed, including 

integrated predictive models, multi-hazard analysis, and data science-based strategies (Zscheischler et al. 

2018; Gran Castro, Ramos De Robles 2019). Floods can be extreme events in most countries in Latin 

America and the Caribbean (LAC) (Molina-Aguilar, Gutierrez-Lopez 2020). In general, these floods result 

from torrential rains produced by convective systems (Khurana et al. 2017). Many of these extreme storms 

are also caused by hurricane-cyclones that affect the Pacific Ocean coast, the Gulf of Mexico, and the 

Caribbean region (Hallegatte et al. 2013). Although hurricane rains can sometimes benefit cultivated areas 

and fill reservoirs (Breña-Naranjo et al. 2015), in most cases, they cause disasters (Jaimes et al. 2014). 

However, in developing countries, such as most LAC countries, there is often a lack of effort in following 

the development and tracking of these extreme phenomena (Leroux et al. 2018). Due to the limited 

number of radars, meteorological satellites, and ground-based warning systems, predicting the impact site 

of hurricane-cyclones in LAC remains a challenging task (Heming et al. 2019; Magnusson et al. 2019). 

Recent studies have mapped the East Coast of the United States, using colors to indicate the probability 

of a hurricane occurrence at each site (Gori et al. 2022). Monitoring extreme phenomena like hurricanes 

and the rain-fields they produce is critical for mitigating the risks of flooding, particularly in coastal areas. 

For example, Hurricane Otis in October 2023 and Hurricane Pauline in October 1997 devastated the city 

of Acapulco on the Pacific-coast of Mexico. Forecasting of storm tracks is typically carried out using data 

from sensors installed on specialized aircraft (Aberson, Franklin 1999). Forecasting can also employ global 

models (Chen et al. 2013; Nishimura, Yamaguchi 2015; Hon 2020), high-definition satellite imagery (Weng 

et al. 2007; Cui et al. 2013), or even fuzzy clustering techniques (Nath et al. 2015). Currently, few studies 

use wind speed and pressure data to predict hurricane tracks based on probabilistic estimates of 

simultaneous occurrence. This paper utilizes statistical data to analyze the climatology and track of 

hurricane-cyclones that have impacted the coasts of Mexico from 1851 to 2022. The aim is to map the 

zones of joint probability of occurrence of wind speed and pressure data using a Bayesian formulation. 

2. Materials and methods 
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This work is based on the premise that a mathematical model for track forecasting, which accounts for the 

physiographic and meteorological conditions of a hurricane, can accurately represent and predict the 

behavior of hurricane rainfall in space and time. The variability of the rainfall fields produced by hurricanes 

is directly proportional to the joint probability calculated with the wind and atmospheric pressure data. 

2.1. Parameters for data collection 

Data selection was based on research needs and recommendations from previous studies. Specifically, 

Knapp et al. (2010) used the International Best Track Archive for Climate Stewardship (IBTrACS). 

Tropical hurricanes and tropical storms track data were carefully collected from the International Best 

Track Archive for Climate Stewardship (IBTrACS). It is the most complete global collection of tropical 

cyclones available. It merges recent and historical tropical cyclone data from multiple agencies to create a 

unified, publicly available, best-track dataset that improves inter-agency comparisons. IBTrACS was 

developed collaboratively through all the World Meteorological Organization (WMO) Regional 

Specialized Meteorological Centers, as well as other organizations and individuals from around the world 

(available at: https://www.ncei.noaa.gov/data/international-best-track-archive-for-climate-stewardship-

ibtracs/v04r00/access/csv/). The data were built as a time-series database in Excel (CSV). Probabilistic 

models for extreme values and a Bayesian analysis were performed using a Visual Basic program. The data 

collected are for the area between longitudes 116° and 85° west and latitudes 12° and 30° north. 

2.2 Description of data collection 

Historical data for hurricanes and tropical storms are available from 1851 to 2022. The original database is 

composed of storm identifier, year, basin, sub-basin, data-name provided by the agency, time in Universal 

Time Coordinates (UTC), nature of event (disturbance, tropical, extratropical, or subtropical), latitude, 

longitude, maximum sustained wind speed from the WMO agency for the current location, and 

atmospheric pressure at the ocean surface in hectopascals. After processing the original data, the resulting 

files contain in addition the following results: frequency in years of wind speed occurrence, probability of 

wind speed occurrence, reduced Gumbel variable for wind speed, and estimated value of wind speed 

based on the extreme event model. Other variables include: frequency in years of pressure occurrence, 

probability of pressure occurrence, reduced Gumbel variable for pressure, and estimated value of pressure 

based on the extreme event model. From the Bayesian analysis, we derived the probability that a hurricane 

or tropical storm with a certain wind magnitude will happen at a specific latitude and longitude, given that 

a specific pressure event occurs. The general scheme of all available data is shown in Figure 1. In 

summary, there are 19,246 records with a total of 288,690 data points. 
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Fig. 1. Sites with information available on the Atlantic and Pacific coasts of Mexico. 

3. Results 

3.1 Generalized Extreme-Value Distribution (GEV) 

All available data were transformed into a time series. Frequency analysis was applied as described in 

Gutierrez-Lopez (2022). The Generalized Extreme Value distribution (GEV) was used to model 

extreme wind speed and atmospheric pressure for all events at all sites. Figures 2 and 3 show the result 

of this fit to the characteristic climatological variable data. The theory of extreme values is concerned 

with events at the tails of probability distributions. Gumbel proposed the characteristic function of 

these extremes, which allows for their adjustment based on the sample size of the maximum events of 

a time series (Molina-Aguilar et al. 2019). 
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Equation (1) represents the (GEV and establishes three types of distribution, which graphically generate 

asymptotic behaviors according to the values adopted from the parameters of location (ε), scale (λ) and 

shape (k). F represents the probability of non-exceedance for the probability distribution function; qi is 

the order assigned to the maximum annual expenditure in the time series. In the case where k tends to 0 

and  

–∞ < qi < ∞ is defined as Type I (EV1) called the Gumbel function. If k < 0 and ε + λ/k < qi < ∞ is 

defined as Type II, known as the Frechet function. Finally, if k > 0 and –∞ < qi < ε + λ/k, a Type III or 

Weibull function is generated. Its probability density function (fdp), is obtained from the ratio of change 

(qi) with respect to the independent variable Q, with the form: 
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The Gumbel distribution (EV1) is one of the three distributions generated from the GEV, in which the 

random variable presents bias to the right. 
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Fig. 2. Fit of the EV1 distribution to wind speed values. 
Fig. 3. Fit of the EV1 distribution to atmospheric 

pressure values. 

3.2. Bayesian model 

For a given value of q, X follows a binomial law B(n;q). The set of possible values of q can be 

characterized probabilistically according to a Bayesian model (Saporta 2011). The model is based on 

previous events which allow establishing the frequency of occurrence of q. Everything comes down to the 

fact that q is a variable between (0,1) that has a prior probability distribution f(q). Thus, we obtain a model 

that attempts to deduce q from X. Then it aims to find the posterior probability distribution of q; that is: 

𝑓(𝑞 𝑋⁄ ) =  
𝑃(𝑋 𝑞)𝑓(𝑞)⁄

𝑃(𝑋)
=  

𝑞𝑋(1−𝑞)𝑓(𝑞)

∫ 𝑞𝑋(1−𝑞)
1

0 𝑓(𝑞)𝑑𝑞
 (5) 

In this sense, q can be estimated by choosing either the mean posterior probable value or the extreme 

posterior value. Figures 4, 5, and 6 show some examples of the results of this procedure for different time 

lags. 
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Fig. 4. Probability that a hurricane or tropical storm with a specific wind magnitude will happen at (latitude, 

longitude) given that a specific atmospheric pressure occurs (1980-1995). 

 

Fig. 5. Probability that a hurricane or tropical storm with specific wind magnitude will happen at (latitude, longitude) 

given that a specific atmospheric pressure occurs (2006-2013). 

 

79



Fig. 6. Probability that a hurricane or tropical storm with specific wind magnitude will happen at (latitude, longitude) 

given that a specific atmospheric pressure occurs (2014-2022). 

4. Damage assessment: Hurricanes Pauline [1997] and Otis [2023] in Acapulco 

4.1. Hurricane Pauline [1997] 

On October 8, 1997, Hurricane Pauline hit Acapulco as a Category 4 storm. It caused extreme rainfall (up 

to 411 mm in less than 24 hours), which led to flash floods, debris flows, and landslides. The most 

affected areas were hillsides and marginal urban areas. Homes built in highly vulnerable conditions 

collapsed in these areas. There were approximately 160 deaths and more than 260 missing persons, in 

addition to hundreds of injured and displaced individuals. The urban infrastructure was severely damaged. 

Streets were destroyed, bridges collapsed, and the water and drainage networks were rendered useless. 

Homes were swept away by floodwaters. The direct economic losses resulting from the disaster were 

estimated at $450 million, primarily affecting the housing, commercial, and tourism sectors. Hydrological 

studies of the La Sabana River basin demonstrate how geomorphology and land use influenced the 

torrential response, exacerbating the effects of the rainfall associated with Pauline (Rodríguez Esteves 

2017). 

Hurricane Otis [2023] 

On October 25, 2023, Hurricane Otis made landfall as a Category 5 cyclone, with sustained winds of 

270 km/h and gusts up to 330 km/h. It became the strongest hurricane ever recorded on the Mexican 

Pacific coast. Its rapid intensification was unusual: it went from a tropical storm to a Category 5 hurricane 

in less than 12 hours, leaving little time for preparation or evacuation. The damage ranged from severe 

coastal erosion (up to 76 meters on some beaches) and collapsed storm drains to the complete disruption 

of communication, electricity, and drinking water networks. The estimated cost of the damage ranges 

from $9.9 billion to $14.8 billion. This has had a severe impact on the region’s tourism economy, as well 

as on thousands of homes, hotels, schools, and hospitals. Post-event satellite images reveal geographical 

alterations along the coastline and the presence of new landslides, confirming the multi-threat nature of 

Otis’s impact (Ramírez-Herrera et al. 2025). However, a study by the University of California indicates 

that the historical loss of mangroves in Acapulco since the 1980s has contributed significantly to the area’s 

current vulnerability. Adequate mangrove coverage is estimated to have dampened up to 25% of the 

storm’s energy in low-lying coastal areas (Hook 2025). 

5. Discussion 

Mexico is the most affected country in the world by hurricanes and tropical storms, which can strike its 

two coasts simultaneously. Because of its location and atmospheric conditions, in 2013, hurricanes Ingrid 

and Manuel hit Mexico’s coasts at the same time. It is extremely urgent to provide a database with all the 

hurricanes and tropical storms that have occurred in this area (Molina-Aguilar, Gutiérrez-López 2020). 

The original database presents hurricane or tropical storm name, location, wind speed, and atmospheric 
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pressure information for all events from 1851 to 2022. This information is not directly available anywhere 

in Mexico. Therefore, this database and its computational tool for look-up are of significant importance. 

The processed extreme wind and pressure data are fitted to a probability distribution of extreme value 

type I; the database shows the estimated values for the wind and atmospheric pressure for each of the 539 

hurricanes and tropical storms analyzed. After processing the primary data, the files contain the following 

results: date, name, latitude, longitude, frequency in years of winds and atmospheric pressure occurrence 

(Leroux et al. 2018; Bieli et al. 2019), probability and frequency of extreme winds and pressure, estimated 

value of extreme winds and atmospheric pressure based on the extreme event model, and the probability 

that a hurricane or tropical storm with some wind magnitude will happen at a location where a specific 

pressure event occurs. The calculation of the conditional probability over the whole study area is the initial 

step to estimate hurricane and tropical storm tracks (Khurana et al. 2017; Heming et al. 2019). 

6. Conclusions 

The maps shown in Figures 4-6 provide information on the probability of a hurricane occurring with a 

specific wind speed and atmospheric pressure. The use of Bayesian analysis allows for the observation of 

vulnerable coastal zones as well as areas at sea susceptible to the occurrence of a hurricane with this 

combination of wind speed and atmospheric pressure. The frequency of cyclones is greater in the Mexican 

Pacific (1.8/year) than in the Gulf of Mexico (0.4/year). During the August-September period, when the 

incidence is at its highest, rainfall increases up to three to four times the normal average. The tracks of 

Hurricanes Otis and Pauline correspond to the maximum probability zones for these areas. To prevent 

damage caused by hurricanes of extraordinary intensity, it is important to explore general concepts. This 

work uses only two variables, but it should be complemented with data on high tide, storm-waves, 

precipitation, and other relevant factors. The analysis of frequencies using extreme distributions is 

appropriate and allows for the calculation of probabilities of occurrence. 

6.1. Expected use of results 

The first step in estimating cyclone tracks (Nath et al. 2015; Magnusson et al. 2019; Hon 2020) is to 

calculate the conditional probability over the entire study area, followed by a geostatistical analysis 

(variogram) of the predominant directions. With the estimated probability, it is possible to determine 

future tracks with a significant degree of accuracy (Nishimura, Yamaguchi 2015; Tang et al. 2021; Trošelj, 

Lee 2021). 
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