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Abstract: The role of renewable energy sources in the Polish power system is growing. The highest
share of installed capacity goes to wind and solar energy. Both sources are characterized by high
variability of their power output and very low dispatchability. Taking into account the nature of the
power system, it is, therefore, imperative to predict their future energy generation to economically
schedule the use of conventional generators. Considering the above, this paper examines the
possibility to predict day-ahead wind power based on different machine learning methods not for a
specific wind farm but at national level. A numerical weather prediction model used operationally
in the Institute of Meteorology and Water Management–National Research Institute in Poland and
hourly data of recorded wind power generation in Poland were used for forecasting models creation
and testing. With the best method, the Extreme Gradient Boosting, and two years of training
(2018–2019), the day-ahead, hourly wind power generation in Poland in 2020 was predicted with
26.7% mean absolute percentage error and 4.5% root mean square error accuracy. Seasonal and daily
differences in predicted error were found, showing high mean absolute percentage error in summer
and during daytime.

Keywords: machine learning; wind power forecasting; day-ahead; numerical weather predic-
tion; ALARO

1. Introduction

Solar and wind energy are slowly becoming significant players in the Polish energy
system. This is particularly visible from a perspective of their rated capacity, which, as
of the end of 2020, was 3420 MW [1] and 6347 MW [2], respectively, for solar and wind.
Although such capacities correspond to 19.8% of the total installed capacity [3], the share
of solar and wind energy in satisfying the national electrical energy demand remains
relatively low, at 1.4% and 9.2%, respectively. (Estimation based on Entso data on wind
generation in Poland [4], which in 2020 was 15.2 TWh; electricity demand in Poland, which
was 165.5 TWh [5]; and assuming photovoltaic (PV) generation as 1 MWh per 1 kW of
installed capacity. For PV, assumption was made that, over the year 2020, generation was
calculated for mean installed capacity of that at the beginning of 2020 (1300 MW) and end
of 2020 (3420 MW), namely 2360 MW).

With a growing share of solar and wind sources, their efficient integration to the
existing structure of the power system becomes a major challenge [6]. The complexity of
the problem lies in an intrinsically variable and nondispatchable nature of solar and wind
generators but also in limited flexibility of the available infrastructure.
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In power systems with a nonexistent or low share of variable generators, the unpre-
dictability was historically concerning, mostly on the demand side. In the past, many
research works have been dedicated to the problem of developing precise day-ahead en-
ergy demand forecasting tools, applying methods, such as Artificial Neural Networks
combined with wavelet transformation [7], Deep Neural Networks [8] or various data-
driven approaches, as presented in a review by Liu et al. [9]. On the other hand, the supply
side was considered as fully controllable with a safety margin reserved for unexpected
individual units failures or sudden spikes in power demand. With the advent of large-scale
solar and wind power generators (in particular, from the perspective of their high installed
capacities in relation to the load but still relatively small share in satisfying the demand),
the problem of energy supply forecasting became a pressing need to efficiently operate
the power system. Precise forecasts are mandatory not only for a transmission system
operator but also for owners of variable power stations who want to actively participate in
energy markets. Furthermore, as stated by Jacobson and Deluchi [10], forecasting power
generation from variable renewable generators is essential from the perspective of their
efficient integration to the grid.

The main contribution of this paper is presenting a model for a day-ahead wind
power prediction for the whole country in the example, Poland, not by applying models to
individual wind farms but for the whole country at once.

The two following subsections will present a nonexhaustive literature review sum-
marizing most recent works in the area of wind power forecasting. The first subsection
will analyse articles discussing wind power forecasting outside Poland and the second one
those focusing on Poland, as they can be directly used later on in the results discussion
section. Section 2 describes machine learning methods, a training strategy, details of nu-
merical weather prediction (NWP) forecasting and wind power generation data. Section 3
describes results of the study, including analysis of special cases. Section 4 discusses the
results, and Section 5 concludes the paper.

1.1. Wind Power Forecasting

Over the recent years, several review articles have been published that analysed, in detail,
various wind power forecasting methods and approaches. A review by Hanifi et al. [11]
provided a critical overview on physical, statistical and hybrid approaches to wind power
forecasting. Their review not only indicated the past and current trends in this area of
research but also highlighted future research directions, which include a need to develop
more advanced and cost-effective forecasting methods; improve data processing and error
post-processing, due to a proliferating amount of available data; and creating specific
models for an off-shore wind power prediction, as such wind turbines operate in different
weather conditions. Importantly, the authors noted that there is a lack of consensus with
regard to the standard baseline model, which could be used as a reference for the newly
developed ones. Furthermore, the review work by Hanifi et al. analysed the structure of
input variables used in wind power prediction models. Their findings indicate that, among
40 analysed articles, exactly 50% used wind speed, followed by 25% that has also included
air temperature. Very few studies used predictors, such as “generation hour” or “turbulence
intensity”. The findings presented by Hanifi et al. are in line with the results presented
by Lin and Liu [12], who also found that wind speed, wind direction, temperature and
humidity are the most commonly used wind power predictors. According to Hanifi et al.,
the most commonly used metrics for model evaluation are root mean square error (RMSE),
normalized RMSE (nRMSE), mean absolute error (MAE) and mean absolute percentage
error (MAPE). Another review work by Santhos et al. [13] discussed differences between
wind speed and wind power forecasting. In their work, they have also provided a temporal
(time horizon) classification of forecasting models. According to it, one can distinguish
very short-term forecasting (from a few seconds to 30 min), short-term forecasting (from
30 min to day-ahead), medium-term forecasting (from day-ahead to month-ahead) and
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long-term forecasting (more than month-ahead). Santhos et al. summarize the potential of
hybrid method approach, which can yield an increase in forecast accuracy.

A study by Zhang et al. [14] discussed the development of probabilistic wind power
forecasting methods. Such an approach is suggested by the authors, since wind-to-power
conversion is a complex and nonlinear problem. By using the probabilistic approach, one
can not only obtain the forecast but also the quantitative information on the uncertainty.
Considering above, Zhang et al. have distinguished the following three main categories
of wind power forecast incorporating the uncertainty: probabilistic forecasting, risk index
forecasting and scenario forecasting. Another work by Yan et al. [15] conducted yet another
in-depth review on the wind power probabilistic forecasting, with a special attention
paid to the uncertainty factors, modelling approaches and time horizons. The authors
state that the probabilistic wind speed forecasting brings additional benefits by reducing
the risk of a deterministic prediction, improves the process of power system scheduling,
reduces operating costs of wind farms and the power system and improves a wind power
grid integration.

The day-ahead wind power forecasting problem was widely discussed by Yang et al. [16],
whereas the improved clustering algorithm was proposed and Zheng et al. [17], where a
two-stage hybrid model approach was proposed. High resolution NWP models, down-
scaled with a computational fluid model, were proposed by Mana et al. [18], with a finding
that they can perform as good or better than statistical methods. A novel variational model
decomposition and long, short-term memory were introduced by Shi et al. [19]. There was
an interesting finding that some methods perform better at the beginning of the day and
others at the end of the day.

A review article by Augustyn and Kamińska [20] provides a good overview of most
commonly applied forecasting methods. The following classification can be applied:

• persistence models—which assume that wind power at time t is the same as in t—∆t;
• physical models—which use a combination of wind turbine/characteristic power

curve and numerical weather prediction (NWP) model data to generate forecasts;
• statistical models—include time series and machine learning models. The time series-

based models are autoregressive approach, autoregressive moving average and autore-
gressive integrated moving average. Models with exogenous inputs are also applied.
Recently, models based on Artificial Neural Networks (ANN) gained popularity. They
are often combined with other approaches, such as wavelet transformation, k-nearest
neighbour algorithms and evolutionary optimization techniques. Techniques men-
tioned earlier can be naturally used independently.

• hybrid methods—is an approach when both large amounts of historical data and physical
models are applied. Hybrid method aims at using the strengths of both approaches.

Summarizing the above, the research in the field of wind power forecasting is focused
on precise weather predictions on different timescales and postprocessing them to energy
with physical, statistical and hybrid models.

1.2. Wind Power Forecasting in Poland

This section presents an overview of recent articles dedicated to wind power forecast-
ing in the context of the Polish power system.

An article by Rubanowicz [21] analysed several statistical methods for generating
short-range wind power forecasts from a wind farm. The results of his investigation have
revealed that Holt method outperformed the remaining approaches, in terms of forecast’s
accuracy. Popławski et al. [22] presented a one-day-ahead energy production model for a
wind farm with 15 wind turbines. Their model included Unified Model forecasts from the
Interdisciplinary Centre for Mathematical and Computational Modelling. Considering the
MAPE criterion, their model was characterized with 46.9% error. Karkoszka [23] presented
an overview of various methods (physical, statistical and hybrid) to forecast wind power
generation from wind farms. As input data, various NWP models have been considered.
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Baczyński and Piotrowski [24] analysed a day-ahead wind energy production forecast
model based on ANN. Their analysis revealed that wind speed is a crucial input parameter
in determining the model’s accuracy. Best results have been obtained by combining
several neural networks. In another work, Popławski and Szeląg [25] have analysed the
possibility of using Hurst exponent to predict the instability of wind power generation.
Their findings indicate that this approach can decrease the normalized MAPE (nMAPE)
by 0.64%. Szeląg [26] used wind speed, temperature and air pressure as input variables to
predict a power output from a wind farm consisting of 10 turbines, each with a nominal
capacity of 2.5 MW. The forecasting model was able to predict the energy generation, with
nMAPE equal to 6.63%. However, the author did not use real meteorological forecasts.
Instead, random error to measurements had been introduced. Hossa et al. [27] used wind
speed measurements to predict wind power generation from a fleet of 19 wind turbines. A
multilevel regression method was applied and yielded a mean error equal to 12%.

Rubanowicz [28] applied an Elman ANN to recreate the power generation from the
selected wind farm. The results of his analysis highlight the importance of including
the wind speed and wind direction as input variables. Rubanowicz stresses a need for
careful evaluation of input data, since measuring errors often lead to skewed forecasts, as
the model has been created based on an invalid training subset. A study by Malska and
Mazur [29] has shown that wind speed variability on a spatial scale can lead to different
power outputs of wind turbines, even if these are located close to each other, indicating,
thereby, a need for downscaling and more detailed measurements. A work by Baczyński
and Kopyt [30] considered two wind farms located in Poland. For them, they have created
wind power forecasts for the next 48 h based on wind speed forecasts available from NWP.
The conversion of wind speed to wind power, based on ANN, had been applied. The best
results had been obtained by combining two NWP models.

Czapaj et al. [31] discussed various forecasting methods (persistent, regressions, ex-
ponential smoothing) for demand and supply forecasting in energy clusters to find that
only multivariate adaptive regression splines yield satisfactory results. Poławski and
Szeląg [32] used fractal theory to generate short-term wind power forecasts. Pietrzak
and Świderski [33] proposed a relevant extension to the existing database of wind speed
measurements. Namely, they paid attention to the fact that wind speed measurements can
not only be obtained from the meteorological institute but are also commonly generated by
institutions managing transmission networks or roads. Greater spatial coverage of wind
speed measurements could improve the quality of forecasting models.

Summarizing the above, the research in Poland is mainly focused on using observa-
tional data to analyse the possibility of predicting energy production, if precise forecast
will be provided. Only local implementations are examined with short range prediction
for a few wind turbines. In terms of methods, statistical ones are usually used, with most
research focused on ANN implementations. Up to now, there is no research on the subject
of day-ahead wind power forecasting for the whole country in Poland.

1.3. Research Questions

Considering the literature review presented in Sections 1.1 and 1.2, as well as the
general context and the increasing role of wind power in the Polish energy system, the
objectives of this work are summarized as follows:

• Is it possible to predict day-ahead wind power generation in Poland with high accuracy?
• Which machine learning methods predict day-ahead wind power generation with the

smallest error?
• Is there seasonal or daily variation of model errors?
• What are characteristic weather conditions for forecasts with small and big errors?

2. Materials and Methods

To simulate energy generation from wind turbines installed in Poland, four machine
learning methods were used, with wind speed forecast from NWP model, energy genera-
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tion time series (available online https://www.pse.pl) and localization of wind turbines in
Poland (available online https://www.ure.gov.pl) used as input data.

The input data was divided into training, validation and testing subsets. Data from
2018–2019 was divided into training and validation subsets (70–30), whereas year 2020 was
used for testing. The same subsets were considered in all models. All error metrics in this
article are calculated for data from 2020.

Computation of MAPE and RMSE is a common way to measure and assess the error
of a model in predicting quantitative data. Formally, it is defined as follows, Equations (1)
and (2), respectively:

MAPE =
100%

n

n

∑
i=0

∣∣∣∣ xi − yi
xi

∣∣∣∣ (1)

RMSE =

√√√√ n

∑
i=0

(yi − xi)
2

n
(2)

where n stands for number of elements, xi stands for observed value and yi stands for
predicted value.

Both Equations (1) and (2) deal directly with the residuals produced by considered
models. The decision whether a model performs well is made by the assessment of the
magnitude metric. Small error values point to an acceptable predictive ability, while
large values suggest otherwise. Analysing error metrics is crucial to consider the nature
of the data set, because outliers could impact on the total error metric. For that reason,
it is important to compute and assess more than one metric. Wide comparison of the
performance evaluation metrics of wind generation prediction models, ANN solutions and
time series analysis that can be used was given by Hanifi et al. [9]. RMSE and MAPE metrics
were pointed to as one of the most frequently applicable, with the RMSE highly considered.

2.1. Machine Learning Methods

The Random Forest (RF), first proposed by Breiman [34], is an ensemble learning,
decision-tree-based method constructed by creating a series of decision trees from boot-
strapped training samples. Computations were done with the Random Forest R pack-
age [35], with default values of tuneable parameters. Schematic diagram of the Random
Forest method is presented in Figure 1.

The Artificial Neural Network (ANN) model was created in Matlab R200b. A mul-
tilayer perceptron ANN was considered for further analysis. In a typical ANN, three
layers can be distinguished: input layer (exogenous variables), hidden layer (nonlinear
transformation of inputs to outputs) and output layer (endogenous variables). The number
of neurons in the hidden layer is decided empirically by testing various configurations.
The number of hidden layers is usually one or two, as these two options can cover the
majority of fitting problems. In total, we tested ANN with 1 and 2 hidden layers, each
having from 1 to 20 hidden neurons. Sigmoid and linear activation functions were used,
respectively, in hidden and output layers. Prior to ANN creation, the data was normalized.
The Levenberg–Marquardt backpropagation algorithm was selected to train the neural
network and update the weights and biases. In total, 420 different ANN architectures were
analysed, and the one best performing, in terms of mean absolute percentage error, was
selected. The schematic diagram of ANN method is presented in Figure 2.

https://www.pse.pl
https://www.ure.gov.pl
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A Deep Neural Network (DNN) is principally a classic ANN with more than one
hidden layer. The method is said to be particularly beneficial when dealing with large
datasets, for example, in recognition of speech or image [36]. In this article, an implementa-
tion of deep learning from the H2O data science platform was used [37]. Its structure is
based on a feedforward multilayer network. Learning procedure concerns adaptation of
neuron weights in order to minimize training error through a backpropagation algorithm.
The information between layers is transmitted with a modification made by a nonlinear
activation function. Multiple levels of nonlinearity lead to better feature extraction and
information gain. There is a considerable number of parameters that affect DNN perfor-
mance, such as number of layers, number of neutrons in each layer, type of activation
function and number of training iterations (epochs). Based on a manual tuning, an optimal
net’s architecture was found to have 3 hidden layers, each with 200 neurons. The number
of epochs was boosted to 300.

Extreme Gradient Boosting (XGB) is one of the most efficient and popular implemen-
tations of gradient boosting algorithms and was proposed by Chen and Guestrin [38] as
R package xgboost. It develops an ensemble of decision trees in a sequential way. Un-
like in RF, each tree is a weak learner—it merely outperforms a random guess [39]. At
each iteration, a new tree is grown, based on information from a previous model. The
information concerns pieces of training data where the model had the largest error, which
is foundational for minimizing a loss function. The process is a sort of gradient descent
algorithm. Every tree added to the model slightly improves its performance. This novel



Energies 2021, 14, 2164 7 of 18

algorithm structure results in substantial scalability of XGBoost and computational time
about 10 times faster than other methods. The method offers several tuning hyperparame-
ters, which control, e.g., a number of trees (nrounds), their maximum depth (max_depth)
and learning rate (eta). Considering our dataset, the parameters were manually optimized
as follows: nrounds was enlarged to 10,000, with a threshold of early stopping set to 5, eta
was decreased to 0.2, and max depth was set to 6.

2.2. ALARO Model

On 27 November 2020, the creation of the new consortium “A Consortium for
COnvection-scale modeling Research and Development” (ACCORD), was approved for
the community development of numerical models of limited area at convective scale. The
creation of this consortium results from the culmination of a merging process between the
consortia Aire Limitée Adaptation Dynamique Développement International (ALADIN),
Regional Cooperation for Limited Area modelling in Central Europe (RC-LACE) and High-
Resolution Limited Area Model (HIRLAM), for the development of state-of-art atmospheric
limited area numerical models, with application to operations.

The ACCORD system (previously ALADIN system) is an NWP system developed
by the international ACCORD consortium for operational weather forecasting and re-
search purposes. The ALADIN NWP system is based on a code that is shared with the
Integrated Forecast System (IFS) global model developed by the European Centre for
Medium-Range Weather Forecasts (ECMWF) and the Action de Recherche Petite Echelle
Grande Echelle (ARPEGE) global NWP model used for operational weather forecasting at
Météo-France [40].

One of the consortium’s development work is to provide several configurations of
limited-area model (LAM), which were precisely validated to be used for operational
weather forecasting at the 16 partner institutes. These configurations are called the AL-
ADIN canonical model configurations (CMCs). Currently, there are three canonical model
configurations: 1. ALADIN baseline CMC, 2. Application of Research to Operations at
Mesoscale (AROME) CMC and 3. ALADIN–AROME (ALARO) CMC. AROME CMC and
ALARO CMC are operationally used in IMWM–NRI, together with the CY43T2 [41].

The background model data come from operational forecast results of nonhydrostatic
ALARO CMC model. Operational model ALARO CMC has a horizontal resolution of
4 km × 4 km and 70 vertical levels, and the forecast length is 72 h. The size of ALARO
CMC domain is 799 × 799 points, centred on the geographical point 17.5◦ E 52.5◦ N. The
location of the lowest model level is at 9 m above ground level, and the model top is located
at 65 km above ground level. Lateral and boundary conditions for the ALARO CMC
model were obtained from the forecast of the global model ARPEGE. During the analysed
periods, initial and boundary data resolution was changed from 15.2 km × 15.2 km to
9.4 km × 9.4 km (11 November 2019). Archival forecasts of the ALARO CMC model
with temporal resolution of 1 h (forecast hours from 25th to 48th), were used to study
the characteristics of wind speed at 100 m a.g.l. for the period from 1 January 2018 to
31 December 2020.

Due to ongoing work on the assimilation of surface data in the ALARO model in the
ALADIN Poland group, data assimilation was not used in this research, and models were
run in dynamical adaptation mode.

2.3. Power Generation Data and Wind Turbines Installed in Poland

Hourly data time series of power generated on country level from wind turbines was
obtained from Polskie Sieci Elektroenergetyczne (Polish Transmission System Operator).
Together with information from Urząd Regulacji Energetyki (Energy Regulatory Office)
about the localization and power of installed wind turbines in Poland, we constructed a
database for every hour from 2018 to 2020 with power generated values and mean wind
speed forecasts for County regions of Poland with installed wind turbines. From 2015
onwards, a stagnation in installed capacity in wind sources was observed (Figure 3a), which
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provides a sizable learning sample for machine learning based methods. Additionally, dates
from 2018 to 2020 were characterized with the most similar ALARO model characteristics
(model version, physics configuration, boundary conditions), which is why this period was
selected for this study. The majority of wind turbines in Poland are installed in the north
and central parts of Poland (Figure 3b).
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3. Results

Results for all models are summarized in Table 1 for hourly data and in Table 2 for
daily data of wind energy production. For hourly data, best results were obtained with
the XGB model, with MAPE equal to 26.7% and RMSE 412 MW. The ANN method, with
MAPE equal to 13.6% and RMSE 6481 MW, was the best for daily sums.

Table 1. Hourly statistics of errors for all models.

Model MAPE RMSE RMSE %

XGB 26.7% 412 4.5%
DNN 31.3% 462 5.7%

RF 29.1% 423 5.0%
ANN 28.1% 420 4.9%

Table 2. Daily statistics of errors for all models.

Model MAPE RMSE RMSE %

XGB 13.9% 6560 1.9%
DNN 15.6% 6566 2.1%

RF 14.6% 6472 1.9%
ANN 13.6% 6481 1.8%

3.1. Scatterplots

All models showed big seasonal differences in the results. In Figure 4, prediction
results are presented for all months in 2020, with biggest differences from observed values
for winter and smallest errors in summer. Forecasted generation is overestimated for days
in January (red dots) and February (black pluses). On the other hand, in December (pink
stars), forecasts have the biggest underestimation. XGB and RF methods performed better
than ANN and DNN, when there was very high real energy production.
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3.2. Hourly and Monthly Statistics

Hourly and monthly statistics of MAPE are presented in Figure 5. For all models, the
highest values (yellow colour) are present in June, while the lowest occurred in January
and February (dark blue colour). Between 0 and 8 UTC, all models produced more accurate
wind forecasts, which were represented by smaller MAPE. The ANN model had the lower
variability of MAPE during days, as well as the whole year, while the XGB model has
the highest differences between low error in January during nights and high error in July
during days.
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3.3. Taylor Diagrams

Taylor diagrams [42] provide a concise statistical summary of agreement between
modelled and observed data, in terms of their correlation, unbiased (or centered) root mean
square error (uRMSE) and standard deviations. Additionally, the uRMSE is normalised
(nuRMSE) to show relative dependence of statistics on hour, month and season. The
statistics based on hourly data are shown in Figure 6. All models (Figure 6a) have good
correlation values (about 0.95). The best agreement was found for the XGB model. RF and
ANN models were slightly worse, and the DNN model was the worst. The same behaviour
was seen for MAPE values, indicated as different marker colours. The statistics had a clear
daily cycle (Figure 6b). The best agreement is found in the morning, with a correlation
value of about 0.97, variance closest to observational one and nuRMSE of about 0.25. Then,
the correlation decreases, approaching nearly 0.9 and nuRMSE 0.4 in the late evening, but
the variance is the most different from the observational one a bit earlier (15–18 UTC). The
best correlation was found (Figure 6c) in November (0.98) and in winter months (December
and February, both 0.95) except January, and the worst in June and August (0.88). The
hourly energy values for summer season had the worst reproducibility (Figure 6d).
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Figure 6. Taylor diagram to compare four models based on hourly values. All values (a), hour of a day (b), months (c) and
seasons (d).

Verification statistics of model predictions for daily sums are shown in Figure 7.
All models agree very well (Figure 7a), in terms of correlation (about 0.97). The ANN
model was top-ranked, and the XGB model was slightly worse. The energy was very
well-predicted in February, with correlation nearly 0.99 and standard deviation close to
1 (Figure 7b), and the worst agreement was found in January. The diversity of winter
months influenced seasonal behaviour (Figure 7c). Modelled daily sums of produced
energy were the best correlated with observations in spring. In autumn, the correlation
was lower, but the variances were very similar in both seasons. Lower variance was found
in winter, and the correlation was similar to spring’s values. The daily energy was worst
predictable in summer.
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It should be noted that MAPE values based on daily sums are about twice lower than
those based on hourly data. One reason is that subdaily variability is hardly predictable.

3.4. Special Cases Study

Three special cases (mean errors of XGB model for 5 February 2020, 27 August 2020
and 27 December 2020 are presented in Table 3) were selected from the testing period to
show characteristic weather conditions with high and low wind energy prediction error.
Weather charts in Figures 8–10 present meteorological situations over Europe, including
fronts, air pressure systems, air masses, clouds, wind and temperature (available online
https://danepubliczne.imgw.pl/datastore).

https://danepubliczne.imgw.pl/datastore
https://danepubliczne.imgw.pl/datastore
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Table 3. Hourly mean error (MW) of XGB model for selected dates.

Hour 5 February 2020 27 August 2020 27 December 2020

1 −23 −210 681
2 219 −251 528
3 88 −87 642
4 98 −186 619
5 −19 −200 631
6 96 −107 634
7 24 −282 702
8 97 −374 857
9 346 −177 845
10 356 −232 905
11 171 −206 884
12 −10 −620 964
13 27 −417 791
14 126 −327 856
15 112 −346 924
16 318 −143 979
17 519 −267 880
18 259 −744 983
19 −225 −856 935
20 −91 −593 915
21 −523 −889 957
22 −435 −1161 963
23 −285 −1104 858
24 −240 122 983
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3.4.1. 5 February 2020

On 5 February 2020, a barometric ridge was located over Poland (Figure 8). Wind was
moderate, and airflow moved from the north and the northwest, following anticyclone
circulation. Air masses were quite stable. Observed daily mean wind speed at the Polish
weather station was around 4.0 ms−1. On that day, the model estimated energy production
very accurately. This result follows general findings for February, but, on the other hand,
high late afternoon errors were also affirmed.

3.4.2. 27 August 2020

On 27 August 2020, as a result of a cold front that had passed the day before, unstable
air above Poland moved eastward following north-western cyclonic circulation (Figure 9).
At the rear of the front, it was possible to observe thunderstorm phenomena. Sudden
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variations in wind speed were observed. At the centre of Poland (Toruń weather station),
10-min mean wind speed observation increased from 4.3 ms−1 to 6.4 ms−1 for 20 min (wind
gust from 7.2 ms−1 to 12.2 ms−1). In the southwest of Poland (Wrocław weather station),
mean wind increased from 4.8 ms−1 to 7.5 ms−1 (wind gust from 10.0 ms−1 to 14.0 ms−1).
On that day, daily energy production was underestimated. It was also the case for nearly
all hourly values.

3.4.3. 27 December 2020

On 27 December 2020, Europe was dominated by a deepening low-pressure system
above British Islands (954 hPa, Figure 10) originating from a valley of the Rossby wave in
the North Atlantic. A high-pressure system was located above east Ukraine. Surface low
moved southeast, increasing atmospheric pressure gradient, causing strong south wind
above Poland and fen-wind in the mountains. At the high-mountain weather station at
Kasprowy Wierch, a maximum of 10-min mean wind speed was 20.4 ms−1 (39.3 ms−1 wind
gust). Wind speed of 4.2 ms−1 (10 ms−1 wind gust) and 13.6 ms−1 (20.2 ms−1 wind gust)
were observed in central (Warsaw) and northern Poland, seacoast (Łeba), respectively. Due
to the large temperature gradient, thunderstorm phenomena were predicted for the next
day, even though they are rare in December. On that day, the model overestimated hourly
values of energy produced. 27 December 2020 was an exceptional day in production of
electricity from Renewable Energy Sources (RES). The largest amount of electricity from
wind was produced (5.7 GW), and the share of coal in electricity fell below 50%. Due to
low electricity demand, its excess had to be exported to the Czech Republic.

4. Discussion

In this paper, we proposed a day-ahead wind power forecasting system based on
multiple machine learning methods, an accurate limited area NWP model and hourly data
time series of power generated from wind turbines that can be applied on the country level
in Poland and possibly in other countries with similar climatological conditions. We have
shown that all models (RF, XGB, ANN and DNN) produced forecasts with similar, high
accuracy. The XGB model, with MAPE equal to 26.7% was the most accurate for hourly
predictions, while for daily sums of produced energy, the ANN method, with MAPE equal
to 13.6%, was the best. Our method, with forecasting wind energy production at national
level and not for specific wind farms, has not been very often examined in the literature so
far, so it is hard to compare our results with others’ research.

Although the comparison of machine learning methods was not the main topic of
this publication, we have shown differences in terms of performance in different seasons,
hours of the day and whether there is a high or low real energy production in the system.
Results presented in the form of error metrics, scatterplots, tables and Taylor diagrams
show that all presented methods can predict day-ahead wind power with high accuracy,
although there are some differences in scores. Two methods based on decision trees (XGB
and RF) were found to perform better than ANN and DNN in situations with very high
hourly energy production. On the other hand, results of two methods based on neural
networks (ANN ad DNN) are characterized with lower daily and monthly variability of
MAPE. For all methods, June was the month with the highest and January with the lowest
MAPE, while the lowest variances of results are found in winter months and the highest
in summer.

Special cases were examined with both very accurate energy production forecasts
and with big errors. In the stable weather conditions, with moderate wind speed, all
models predicted wind energy production with high accuracy, but when the meteorological
conditions are highly unstable or wind speed is extremely high, we can expect an increase
of prediction errors. With the proposed method, the big impact on scores comes from
accuracy of NWP forecasts. In a case study from 27 August 2020, when the convective
system was present in the part of Poland with a high level of installed wind turbines, the
overestimation of wind speed from the ALARO model resulted with high positive bias of



Energies 2021, 14, 2164 16 of 18

energy production, especially in the evening hours. On the other hand, a case study from
27 December 2020 revealed a situation when very high wind speed in Poland was well-
predicted by the ALARO model, but, due to known limitations of machine learning-based
models, the extreme situations were usually underestimated. Another explanation might
be switching off some wind turbines due to very high energy production. The third group
of case studies are situations like the one presented on 5 February 2020, with moderate
wind speed and stable conditions, when the proposed method performs well.

5. Conclusions

In this paper, we have shown that it is possible to predict a day-ahead wind energy
production with high accuracy not necessarily by applying a physical or statistical model
for every wind farm but by building machine learning based model with wind speed
forecasts over the whole country. The proposed method needs an accurate NWP model and
a long enough database with wind energy production and similar level of wind turbines
installed on the examined area. Such vast area predictions are of big interest for planning
energy production from conventional sources.

We believe that the same method can be applied to other countries, especially in Eu-
rope, but similar data must be available, especially hourly, country-level energy production.
One of the limitations is that, in case of an increase of installed turbines in Poland, this
method will have to be tuned, or a bias correction method will have to be applied. As this
method is based on NWP results and machine learning methods, any major changes in
the configuration of the used weather model will affect this method. In that case, a new
version of the NWP model will have to be run again for a training period, and machine
learning models must be trained on those forecasts. Another limitation is related to ma-
chine learning methods, themselves. In case of extreme weather conditions that were not
present in the training dataset, results of this method may have unexpected errors.

In future work, we plan to work with more NWP models that are available in IMWM–
NRI. We also intend to examine the effect on scores of adding more meteorological fields
to our analysis (wind direction, temperature, humidity and pressure) and other methods
that are often used, such as general regression neural network (GRNN) [43,44], radial
basis function neural network (RBFNN) [45], polynomial autoregressive model [46] or
SSOFC-Apriori-WRP [47]. In the next step, we are planning to prepare an ensemble system
based on multiple results that will not only give the best possible forecast but also produce
probabilistic information, which will help in the decision-making process.
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Abbreviations

ACCORD A Consortium for Convection–Scale Modelling Research and Development
ALADIN Aire Limitée Adaptation Dynamique Développement International
ALARO ALADIN–AROME
ANN Artificial Neural Network
AROME Application of Research to Operations at Mesoscale
ARPEGE Action de Recherche Petite Echelle Grande Echelle
CMC Canonical Model Configuration
DNN Deep Neural Network
ECMWF European Centre for Medium-Range Weather Forecasts
HIRLAM High Resolution Limited Area Model
IFS Integrated Forecast System
IMWM–NRI Institute of Meteorology and Water Management–National Research Institute
LAM Limited Area Model
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
nMAPE normalized Mean Absolute Percentage Error
nRMSE normalized Root Mean Square Error
NWP Numerical Weather Prediction
RES Renewable Energy Sources
RC-LACE Regional Cooperation for Limited Area Modeling in Central Europe
RF Random Forest
RMSE Root Mean Square Error
nuRMSE normalized unbiased Root Mean Square Error
uRMSE unbiased Root Mean Square Error
XGB Extreme Gradient Boosting
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Przegląd Elektrotechniczny 2019, 95, 137–140. [CrossRef]
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